Spaces:
Running
Running
muqtasid87
commited on
yea man
Browse files- app_master.py +106 -0
- app_qwen.py +147 -0
- florence.py +51 -0
- requirements.txt +15 -0
app_master.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import app_qwen
|
3 |
+
import project.app_florence as app_florence
|
4 |
+
import project.app_combined as app_combined
|
5 |
+
|
6 |
+
# Set page configuration
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="Vehicle Analysis Suite",
|
9 |
+
page_icon="🚗",
|
10 |
+
layout="wide",
|
11 |
+
initial_sidebar_state="expanded" # Show sidebar by default
|
12 |
+
)
|
13 |
+
|
14 |
+
# Custom CSS for the sidebar and main content
|
15 |
+
st.markdown("""
|
16 |
+
<style>
|
17 |
+
.block-container {padding-top: 1rem; padding-bottom: 0rem;}
|
18 |
+
.element-container {margin-bottom: 0.5rem;}
|
19 |
+
.stButton button {width: 100%;}
|
20 |
+
h1 {margin-bottom: 1rem;}
|
21 |
+
.sidebar-content {
|
22 |
+
padding: 1rem;
|
23 |
+
}
|
24 |
+
.app-header {
|
25 |
+
text-align: center;
|
26 |
+
padding: 1rem;
|
27 |
+
background-color: #f0f2f6;
|
28 |
+
border-radius: 0.5rem;
|
29 |
+
margin-bottom: 2rem;
|
30 |
+
}
|
31 |
+
</style>
|
32 |
+
""", unsafe_allow_html=True)
|
33 |
+
|
34 |
+
def main():
|
35 |
+
# Sidebar for app selection
|
36 |
+
with st.sidebar:
|
37 |
+
st.markdown("### 🚗 Vehicle Analysis Suite")
|
38 |
+
st.markdown("---")
|
39 |
+
app_mode = st.radio(
|
40 |
+
"Select Analysis Mode:",
|
41 |
+
["Qwen2-VL Classifier", "Florence-2 Detector", "Combined Pipeline"],
|
42 |
+
index=0, # Default to Qwen2-VL
|
43 |
+
key="app_selection"
|
44 |
+
)
|
45 |
+
|
46 |
+
st.markdown("---")
|
47 |
+
st.markdown("""
|
48 |
+
### About the Models:
|
49 |
+
|
50 |
+
**Qwen2-VL Classifier**
|
51 |
+
- Quick vehicle classification
|
52 |
+
- Single-word output
|
53 |
+
- Optimized for vehicle types
|
54 |
+
|
55 |
+
**Florence-2 Detector**
|
56 |
+
- Visual object detection
|
57 |
+
- Bounding box visualization
|
58 |
+
- Detailed spatial analysis
|
59 |
+
|
60 |
+
**Combined Pipeline**
|
61 |
+
- Two-stage analysis
|
62 |
+
- Classification + Detection
|
63 |
+
- Comprehensive results
|
64 |
+
""")
|
65 |
+
|
66 |
+
# Clear previous app states when switching
|
67 |
+
if 'last_app' not in st.session_state:
|
68 |
+
st.session_state.last_app = None
|
69 |
+
|
70 |
+
if st.session_state.last_app != app_mode:
|
71 |
+
# Clear relevant session state variables
|
72 |
+
for key in list(st.session_state.keys()):
|
73 |
+
if key not in ['app_selection', 'last_app']:
|
74 |
+
del st.session_state[key]
|
75 |
+
st.session_state.last_app = app_mode
|
76 |
+
|
77 |
+
# Main content area
|
78 |
+
if app_mode == "Qwen2-VL Classifier":
|
79 |
+
st.markdown("""
|
80 |
+
<div class='app-header'>
|
81 |
+
<h1>🤖 Qwen2-VL Vehicle Classifier</h1>
|
82 |
+
<p>Specialized in quick and accurate vehicle type classification</p>
|
83 |
+
</div>
|
84 |
+
""", unsafe_allow_html=True)
|
85 |
+
app_qwen.main()
|
86 |
+
|
87 |
+
elif app_mode == "Florence-2 Detector":
|
88 |
+
st.markdown("""
|
89 |
+
<div class='app-header'>
|
90 |
+
<h1>🔍 Florence-2 Vehicle Detector</h1>
|
91 |
+
<p>Advanced visual detection with bounding box visualization</p>
|
92 |
+
</div>
|
93 |
+
""", unsafe_allow_html=True)
|
94 |
+
app_florence.main()
|
95 |
+
|
96 |
+
else: # Combined Pipeline
|
97 |
+
st.markdown("""
|
98 |
+
<div class='app-header'>
|
99 |
+
<h1>🚀 Combined Analysis Pipeline</h1>
|
100 |
+
<p>Comprehensive vehicle analysis using both models</p>
|
101 |
+
</div>
|
102 |
+
""", unsafe_allow_html=True)
|
103 |
+
app_combined.main()
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
main()
|
app_qwen.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import (
|
3 |
+
Qwen2VLForConditionalGeneration,
|
4 |
+
AutoProcessor
|
5 |
+
)
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
@st.cache_resource
|
14 |
+
def load_model():
|
15 |
+
"""Load the model and processor (cached to prevent reloading)"""
|
16 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
17 |
+
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device_map="auto"
|
20 |
+
).eval()
|
21 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4")
|
22 |
+
return model, processor
|
23 |
+
|
24 |
+
def process_image(image, prompt, model, processor):
|
25 |
+
"""Process the image and return the model's output"""
|
26 |
+
start_time = time.time()
|
27 |
+
|
28 |
+
conversation = [
|
29 |
+
{
|
30 |
+
"role": "user",
|
31 |
+
"content": [
|
32 |
+
{"type": "image"},
|
33 |
+
{"type": "text", "text": prompt},
|
34 |
+
],
|
35 |
+
},
|
36 |
+
]
|
37 |
+
|
38 |
+
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
39 |
+
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to("cuda")
|
40 |
+
|
41 |
+
output_ids = model.generate(**inputs, max_new_tokens=100)
|
42 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
|
43 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
44 |
+
|
45 |
+
inference_time = time.time() - start_time
|
46 |
+
return output_text[0].strip(), inference_time
|
47 |
+
|
48 |
+
def main():
|
49 |
+
# Compact header
|
50 |
+
st.markdown("<h1 style='font-size: 24px;'>🔍 Image Analysis with Qwen2-VL</h1>", unsafe_allow_html=True)
|
51 |
+
|
52 |
+
# Load model and processor
|
53 |
+
with st.spinner("Loading model... This might take a minute."):
|
54 |
+
model, processor = load_model()
|
55 |
+
|
56 |
+
# Initialize session state
|
57 |
+
if 'selected_image' not in st.session_state:
|
58 |
+
st.session_state.selected_image = None
|
59 |
+
if 'result' not in st.session_state:
|
60 |
+
st.session_state.result = None
|
61 |
+
if 'inference_time' not in st.session_state:
|
62 |
+
st.session_state.inference_time = None
|
63 |
+
|
64 |
+
# Main content area
|
65 |
+
col1, col2, col3 = st.columns([1, 1.5, 1])
|
66 |
+
|
67 |
+
with col1:
|
68 |
+
# Input method selection
|
69 |
+
input_option = st.radio("Choose input method:", ["Use example image", "Upload image"], label_visibility="collapsed")
|
70 |
+
|
71 |
+
if input_option == "Upload image":
|
72 |
+
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
|
73 |
+
image_source = uploaded_file
|
74 |
+
if uploaded_file:
|
75 |
+
st.session_state.selected_image = uploaded_file
|
76 |
+
else:
|
77 |
+
image_source = st.session_state.selected_image
|
78 |
+
|
79 |
+
# Default prompt and analysis section
|
80 |
+
default_prompt = "What type of vehicle is this? Choose only from: car, pickup, bus, truck, motorbike, van. Answer only in one word."
|
81 |
+
prompt = st.text_area("Enter prompt:", value=default_prompt, height=100)
|
82 |
+
|
83 |
+
analyze_col1, analyze_col2 = st.columns([1, 2])
|
84 |
+
with analyze_col1:
|
85 |
+
analyze_button = st.button("Analyze Image", use_container_width=True, disabled=image_source is None)
|
86 |
+
|
87 |
+
# Display selected image and results
|
88 |
+
if image_source:
|
89 |
+
try:
|
90 |
+
if isinstance(image_source, str):
|
91 |
+
image = Image.open(image_source).convert("RGB")
|
92 |
+
else:
|
93 |
+
image = Image.open(image_source).convert("RGB")
|
94 |
+
st.image(image, caption="Selected Image", width=300)
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Error loading image: {str(e)}")
|
97 |
+
|
98 |
+
# Analysis results
|
99 |
+
if analyze_button and image_source:
|
100 |
+
with st.spinner("Analyzing..."):
|
101 |
+
try:
|
102 |
+
result, inference_time = process_image(image, prompt, model, processor)
|
103 |
+
st.session_state.result = result
|
104 |
+
st.session_state.inference_time = inference_time
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"Error: {str(e)}")
|
107 |
+
|
108 |
+
if st.session_state.result:
|
109 |
+
st.success("Analysis Complete!")
|
110 |
+
st.markdown(f"**Result:**\n{st.session_state.result}")
|
111 |
+
st.markdown(f"*Inference time: {st.session_state.inference_time:.2f} seconds*")
|
112 |
+
|
113 |
+
# Example images section
|
114 |
+
if input_option == "Use example image":
|
115 |
+
st.markdown("### Example Images")
|
116 |
+
example_images = [f for f in os.listdir("images") if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
|
117 |
+
|
118 |
+
if example_images:
|
119 |
+
# Create grid of images
|
120 |
+
cols = st.columns(4) # Adjust number of columns as needed
|
121 |
+
for idx, img_name in enumerate(example_images):
|
122 |
+
with cols[idx % 4]:
|
123 |
+
img_path = os.path.join("images", img_name)
|
124 |
+
img = Image.open(img_path)
|
125 |
+
img.thumbnail((150, 150))
|
126 |
+
|
127 |
+
# Make image clickable
|
128 |
+
if st.button(
|
129 |
+
"📷",
|
130 |
+
key=f"img_{idx}",
|
131 |
+
help=img_name,
|
132 |
+
use_container_width=True
|
133 |
+
):
|
134 |
+
st.session_state.selected_image = img_path
|
135 |
+
st.rerun()
|
136 |
+
|
137 |
+
# Display image with conditional styling
|
138 |
+
st.image(
|
139 |
+
img,
|
140 |
+
caption=img_name,
|
141 |
+
use_container_width=True,
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
st.error("No example images found in the 'images' directory")
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
main()
|
florence.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
Qwen2VLForConditionalGeneration,
|
3 |
+
AutoTokenizer,
|
4 |
+
AutoProcessor,
|
5 |
+
BitsAndBytesConfig,
|
6 |
+
pipeline,
|
7 |
+
AutoModelForCausalLM)
|
8 |
+
from transformers.image_utils import load_image
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from tqdm import tqdm
|
12 |
+
import os
|
13 |
+
import time
|
14 |
+
from codecarbon import EmissionsTracker
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import matplotlib.patches as patches
|
17 |
+
import psutil
|
18 |
+
import numpy as np
|
19 |
+
import requests
|
20 |
+
|
21 |
+
|
22 |
+
#load model and processor
|
23 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
24 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
25 |
+
|
26 |
+
model_florence = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
|
27 |
+
processor_florence = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
28 |
+
|
29 |
+
# BBox detection using Florence
|
30 |
+
#inference function: input prompt, image_path
|
31 |
+
def grounding(image_path, text_input=None, task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"):
|
32 |
+
with open(image_path, "rb") as f:
|
33 |
+
image = Image.open(f).convert("RGB")
|
34 |
+
|
35 |
+
if text_input is None:
|
36 |
+
prompt = task_prompt
|
37 |
+
else:
|
38 |
+
prompt = task_prompt + text_input
|
39 |
+
|
40 |
+
inputs = processor_florence(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
41 |
+
generated_ids = model_florence.generate(
|
42 |
+
input_ids=inputs["input_ids"],
|
43 |
+
pixel_values=inputs["pixel_values"],
|
44 |
+
max_new_tokens=2048,
|
45 |
+
num_beams=3
|
46 |
+
)
|
47 |
+
generated_text = processor_florence.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
48 |
+
|
49 |
+
parsed_answer = processor_florence.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
50 |
+
|
51 |
+
return parsed_answer[task_prompt]
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
+
torch==2.2.0+cpu
|
3 |
+
Pillow
|
4 |
+
transformers
|
5 |
+
timm
|
6 |
+
auto-gptq
|
7 |
+
huggingface-hub
|
8 |
+
bitsandbytes
|
9 |
+
opencv-python
|
10 |
+
streamlit
|
11 |
+
numpy
|
12 |
+
pandas
|
13 |
+
matplotlib
|
14 |
+
gradio
|
15 |
+
|