import gradio as gr from time import sleep from diffusers import DiffusionPipeline from huggingface_hub import hf_hub_download from safetensors.torch import load_file import torch import json import random import copy import gc lora_list = hf_hub_download(repo_id="multimodalart/LoraTheExplorer", filename="sdxl_loras.json", repo_type="space") with open(lora_list, "r") as file: data = json.load(file) sdxl_loras = [ { "image": item["image"] if item["image"].startswith("https://") else f'https://huggingface.co./spaces/multimodalart/LoraTheExplorer/resolve/main/{item["image"]}', "title": item["title"], "repo": item["repo"], "trigger_word": item["trigger_word"], "weights": item["weights"], "is_compatible": item["is_compatible"], "is_pivotal": item.get("is_pivotal", False), "text_embedding_weights": item.get("text_embedding_weights", None), "is_nc": item.get("is_nc", False) } for item in data ] for item in sdxl_loras: saved_name = hf_hub_download(item["repo"], item["weights"]) if saved_name.endswith('.safetensors'): state_dict = load_file(saved_name) else: state_dict = torch.load(saved_name) item["saved_name"] = saved_name item["state_dict"] = state_dict #{k: v.to(device="cuda", dtype=torch.float16) for k, v in state_dict.items() if torch.is_tensor(v)} css = ''' #title{text-align:center;} #title h1{font-size: 250%} .selected_random img{object-fit: cover} .plus_column{align-self: center} .plus_button{font-size: 235% !important; text-align: center;margin-bottom: 19px} #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} #run_button{position:absolute;margin-top: 12px;right: 0;margin-right: 1.5em;border-bottom-left-radius: 0px; border-top-left-radius: 0px;} .random_column{align-self: center} @media (max-width: 1024px) { .roulette_group{flex-direction: column} } ''' original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)): print(shuffled_items) state_dict_1 = copy.deepcopy(shuffled_items[0]['state_dict']) state_dict_2 = copy.deepcopy(shuffled_items[1]['state_dict']) pipe = copy.deepcopy(original_pipe) pipe.to("cuda") pipe.load_lora_weights(shuffled_items[0]['state_dict']) pipe.fuse_lora(lora_1_scale) pipe.load_lora_weights(shuffled_items[1]['state_dict']) pipe.fuse_lora(lora_2_scale) if negative_prompt == "": negative_prompt = None image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, width=768, height=768).images[0] yield image del pipe gc.collect() torch.cuda.empty_cache() def get_description(item): trigger_word = item["trigger_word"] return f"Trigger: `{trigger_word}`" if trigger_word else "No trigger word, will be applied automatically", trigger_word def shuffle_images(): compatible_items = [item for item in sdxl_loras if item['is_compatible']] random.shuffle(compatible_items) two_shuffled_items = compatible_items[:2] title_1 = gr.update(label=two_shuffled_items[0]['title'], value=two_shuffled_items[0]['image']) title_2 = gr.update(label=two_shuffled_items[1]['title'], value=two_shuffled_items[1]['image']) description_1, trigger_word_1 = get_description(two_shuffled_items[0]) description_2, trigger_word_2 = get_description(two_shuffled_items[1]) prompt_description_1 = gr.update(value=description_1, visible=True) prompt_description_2 = gr.update(value=description_2, visible=True) prompt = gr.update(value=f"{trigger_word_1} {trigger_word_2}") return title_1, prompt_description_1, title_2, prompt_description_2, prompt, two_shuffled_items with gr.Blocks(css=css) as demo: shuffled_items = gr.State() title = gr.HTML( '''
This 2 random LoRAs are loaded to SDXL, find a fun way to combine them 🎨
") with gr.Row(): with gr.Column(min_width=10, scale=8, elem_classes="random_column"): lora_1 = gr.Image(interactive=False, height=263, elem_classes="selected_random") lora_1_prompt = gr.Markdown(visible=False) with gr.Column(min_width=10, scale=1, elem_classes="plus_column"): plus = gr.HTML("+", elem_classes="plus_button") with gr.Column(min_width=10, scale=8, elem_classes="random_column"): lora_2 = gr.Image(interactive=False, height=263, elem_classes="selected_random") lora_2_prompt = gr.Markdown(visible=False) with gr.Column(min_width=10, scale=1, elem_classes="plus_column"): equal = gr.HTML("=", elem_classes="plus_button") with gr.Column(min_width=10, scale=14): with gr.Box(): with gr.Row(): prompt = gr.Textbox(label="Your prompt", show_label=False, interactive=True, elem_id="prompt") run_btn = gr.Button("Run", elem_id="run_button") output_image = gr.Image(label="Output", height=355) with gr.Accordion("Advanced settings", open=False): negative_prompt = gr.Textbox(label="Negative prompt") with gr.Row(): lora_1_scale = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=1, step=0.1, value=0.7) lora_2_scale = gr.Slider(label="LoRa 2 Scale", minimum=0, maximum=1, step=0.1, value=0.7) shuffle_button = gr.Button("Reshuffle!") demo.load(shuffle_images, inputs=[], outputs=[lora_1, lora_1_prompt, lora_2, lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden") shuffle_button.click(shuffle_images, outputs=[lora_1, lora_1_prompt, lora_2, lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden") run_btn.click(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image]) prompt.submit(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image]) demo.queue() demo.launch()