lora-roulette / app.py
multimodalart's picture
Update app.py
ab7c449
raw
history blame
10.8 kB
import gradio as gr
from time import sleep
from diffusers import DiffusionPipeline
from huggingface_hub import hf_hub_download, CommitScheduler
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from uuid import uuid4
from pathlib import Path
import torch
import json
import random
import copy
import gc
lora_list = hf_hub_download(repo_id="multimodalart/LoraTheExplorer", filename="sdxl_loras.json", repo_type="space")
IMAGE_DATASET_DIR = Path("image_dataset") / f"train-{uuid4()}"
IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True)
IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl"
scheduler = CommitScheduler(
repo_id="multimodalart/lora-fusing-preferences",
repo_type="dataset",
folder_path=IMAGE_DATASET_DIR,
path_in_repo=IMAGE_DATASET_DIR.name,
every=10
)
client = InferenceClient()
with open(lora_list, "r") as file:
data = json.load(file)
sdxl_loras = [
{
"image": item["image"] if item["image"].startswith("https://") else f'https://huggingface.co./spaces/multimodalart/LoraTheExplorer/resolve/main/{item["image"]}',
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"is_nc": item.get("is_nc", False)
}
for item in data
]
for item in sdxl_loras:
saved_name = hf_hub_download(item["repo"], item["weights"])
if saved_name.endswith('.safetensors'):
state_dict = load_file(saved_name)
else:
state_dict = torch.load(saved_name)
item["saved_name"] = saved_name
item["state_dict"] = state_dict #{k: v.to(device="cuda", dtype=torch.float16) for k, v in state_dict.items() if torch.is_tensor(v)}
css = '''
.gradio-container{max-width: 650px! important}
#title{text-align:center;}
#title h1{font-size: 250%}
.selected_random img{object-fit: cover}
.selected_random [data-testid="block-label"] span{display: none}
.plus_column{align-self: center}
.plus_button{font-size: 235% !important; text-align: center;margin-bottom: 19px}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 36px;right: 0;margin-right: 1.5em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
.random_column{align-self: center; align-items: center}
#share-btn-container{padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;margin-top: 0.35em;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;font-size: 15px;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#post_gen_info{margin-top: .5em}
'''
original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, seed=-1, progress=gr.Progress(track_tqdm=True)):
state_dict_1 = copy.deepcopy(shuffled_items[0]['state_dict'])
state_dict_2 = copy.deepcopy(shuffled_items[1]['state_dict'])
pipe = copy.deepcopy(original_pipe)
pipe.to("cuda")
pipe.load_lora_weights(state_dict_1)
pipe.fuse_lora(lora_1_scale)
pipe.load_lora_weights(state_dict_2)
pipe.fuse_lora(lora_2_scale)
if negative_prompt == "":
negative_prompt = None
if(seed < 0):
seed = random.randint(0, 2147483647)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, width=768, height=768, generator=generator).images[0]
del pipe
gc.collect()
torch.cuda.empty_cache()
return image, gr.update(visible=True), seed
def get_description(item):
trigger_word = item["trigger_word"]
return f"Trigger: `{trigger_word}`" if trigger_word else "No trigger, applied automatically", trigger_word
def shuffle_images():
compatible_items = [item for item in sdxl_loras if item['is_compatible']]
random.shuffle(compatible_items)
two_shuffled_items = compatible_items[:2]
title_1 = gr.update(label=two_shuffled_items[0]['title'], value=two_shuffled_items[0]['image'])
title_2 = gr.update(label=two_shuffled_items[1]['title'], value=two_shuffled_items[1]['image'])
repo_id_1 = gr.update(value=two_shuffled_items[0]['repo'])
repo_id_2 = gr.update(value=two_shuffled_items[1]['repo'])
description_1, trigger_word_1 = get_description(two_shuffled_items[0])
description_2, trigger_word_2 = get_description(two_shuffled_items[1])
prompt_description_1 = gr.update(value=description_1, visible=True)
prompt_description_2 = gr.update(value=description_2, visible=True)
prompt = gr.update(value=f"{trigger_word_1} {trigger_word_2}")
scale = gr.update(value=0.7)
return title_1, prompt_description_1, repo_id_1, title_2, prompt_description_2, repo_id_2, prompt, two_shuffled_items, scale, scale
def save_preferences(lora_1_id, lora_1_scale, lora_2_id, lora_2_scale, prompt, generated_image, thumbs_direction, seed):
image_path = IMAGE_DATASET_DIR / f"{uuid4()}.png"
with scheduler.lock:
generated_image.save(image_path)
with IMAGE_JSONL_PATH.open("a") as f:
json.dump({"prompt": prompt, "file_name":image_path.name, "lora_1_id": lora_2_id, "lora_1_scale": lora_1_scale, "lora_2_id": lora_2_id, "lora_2_scale": lora_2_scale, "thumbs_direction": thumbs_direction, "seed": seed}, f)
f.write("\n")
return gr.update(visible=True)
with gr.Blocks(css=css) as demo:
shuffled_items = gr.State()
title = gr.HTML(
'''<h1>LoRA Roulette 🎲</h1>
<p>This random LoRAs are loaded into SDXL, can you find a fun way to combine them? 🎨</p>
''',
elem_id="title"
)
with gr.Column():
with gr.Column(min_width=10, scale=16, elem_classes="plus_column"):
with gr.Row():
with gr.Column(min_width=10, scale=3, elem_classes="random_column"):
lora_1 = gr.Image(interactive=False, height=150, elem_classes="selected_random", elem_id="randomLoRA_1", show_share_button=False, show_download_button=False)
lora_1_id = gr.Textbox(visible=False, elem_id="random_lora_1_id")
lora_1_prompt = gr.Markdown(visible=False)
with gr.Column(min_width=10, scale=1, elem_classes="plus_column"):
plus = gr.HTML("+", elem_classes="plus_button")
with gr.Column(min_width=10, scale=3, elem_classes="random_column"):
lora_2 = gr.Image(interactive=False, height=150, elem_classes="selected_random", elem_id="randomLoRA_2", show_share_button=False, show_download_button=False)
lora_2_id = gr.Textbox(visible=False, elem_id="random_lora_2_id")
lora_2_prompt = gr.Markdown(visible=False)
with gr.Column(min_width=10, scale=2, elem_classes="plus_column"):
equal = gr.HTML("=", elem_classes="plus_button")
with gr.Column(min_width=10, scale=14):
with gr.Box():
with gr.Row():
prompt = gr.Textbox(label="Your prompt", info="Rearrange the trigger words into a coherent prompt", show_label=False, interactive=True, elem_id="prompt")
run_btn = gr.Button("Run", elem_id="run_button")
output_image = gr.Image(label="Output", height=355, elem_id="output_image")
with gr.Row(visible=False, elem_id="post_gen_info") as post_gen_info:
with gr.Column(min_width=10):
thumbs_up = gr.Button("👍")
with gr.Column(min_width=10):
thumbs_down = gr.Button("👎")
with gr.Column(min_width=10):
with gr.Group(elem_id="share-btn-container") as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
post_eval = gr.Markdown("Thanks for evaluating. The dataset with evaluations is [here](#)", visible=False)
with gr.Accordion("Advanced settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt")
seed = gr.Slider(label="Seed", info="-1 denotes a random seed", minimum=-1, maximum=2147483647, value=-1)
last_used_seed = gr.Slider(label="Last used seed", info="The seed used in the last generation", minimum=0, maximum=2147483647, value=-1, interactive=False)
with gr.Row():
lora_1_scale = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
lora_2_scale = gr.Slider(label="LoRa 2 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
shuffle_button = gr.Button("Reshuffle!")
demo.load(shuffle_images, inputs=[], outputs=[lora_1, lora_1_prompt, lora_1_id, lora_2, lora_2_prompt, lora_2_id, prompt, shuffled_items, lora_1_scale, lora_2_scale], queue=False, show_progress="hidden")
shuffle_button.click(shuffle_images, outputs=[lora_1, lora_1_prompt, lora_1_id, lora_2, lora_2_prompt, lora_2_id, prompt, shuffled_items, lora_1_scale, lora_2_scale], queue=False, show_progress="hidden")
run_btn.click(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image, post_gen_info, last_used_seed])
prompt.submit(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image, post_gen_info, last_used_seed])
thumbs_up.click(save_preferences, inputs=[lora_1_id, lora_1_scale, lora_2_id, lora_2_scale, prompt, output_image, gr.State("up"), seed], outputs=[post_eval])
thumbs_down.click(save_preferences, inputs=[lora_1_id, lora_1_scale, lora_2_id, lora_2_scale, prompt, output_image, gr.State("down"), seed], outputs=[post_eval])
share_button.click(None, [], [], _js=share_js)
demo.queue()
demo.launch()