File size: 4,949 Bytes
4120479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
from time import sleep
from diffusers import DiffusionPipeline
import torch
import json
import random

lora_list = hf_hub_download(repo_id="multimodalart/LoraTheExplorer", filename="sdxl_loras.json", repo_type="space")

with open(lora_list, "r") as file:
    data = json.load(file)
    sdxl_loras = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_compatible": item["is_compatible"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "is_nc": item.get("is_nc", False)
        }
        for item in data
    ]

saved_names = [
    hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras
]

css = '''
#title{text-align:center}
#plus_column{align-self: center}
#plus_button{font-size: 250%; text-align: center}
.gradio-container{width: 700px !important; margin: 0 auto !important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 57px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
'''

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) 
original_pipe = copy.deepcopy(pipe)
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)):
  pipe = copy.deepcopy(original_pipe)
  pipe.load_lora_weights(shuffled_items[0]['repo'], weight_name=shuffled_items[0]['weights'])
  pipe.fuse_lora(lora_1_scale)
  pipe.load_lora_weights(shuffled_items[1]['repo'], weight_name=shuffled_items[1]['weights'])
  pipe.fuse_lora(lora_2_scale)

  pipe.to(torch_dtype=torch.float16)
  pipe.to("cuda")
  if negative_prompt == "":
    negative_prompt = False
  image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=25, guidance_scale=7).images[0]
  return image

def get_description(item):
      trigger_word = item["trigger_word"]
      return f"LoRA trigger word: `{trigger_word}`" if trigger_word else "LoRA trigger word: `none`, will be applied automatically", trigger_word
    
def shuffle_images():
    compatible_items = [item for item in data if item['is_compatible']]
    random.shuffle(compatible_items)
    two_shuffled_items = compatible_items[:2]
    title_1  = gr.update(label=two_shuffled_items[0]['title'], value=two_shuffled_items[0]['image'])
    title_2 = gr.update(label=two_shuffled_items[1]['title'], value=two_shuffled_items[1]['image'])

    description_1, trigger_word_1 = get_description(two_shuffled_items[0])
    description_2, trigger_word_2 = get_description(two_shuffled_items[1])
    
    prompt = gr.update(value=f"{trigger_word_1} {trigger_word_2}")
    return title_1,description_1,title_2,description_2,prompt, two_shuffled_items

with gr.Blocks(css=css) as demo:
  shuffled_items = gr.State()
  title = gr.HTML(
        '''<h1>LoRA Roulette 🎲</h1>
        <h4>Two LoRAs are loaded to SDXL at random, find a way to combine them for your art 🎨</h4>
        ''',
        elem_id="title"
  )
  with gr.Row():
    with gr.Column(min_width=10, scale=6):
      lora_1 = gr.Image(interactive=False, height=350)
      lora_1_prompt = gr.Markdown()
    with gr.Column(min_width=10, scale=1, elem_id="plus_column"):
      plus = gr.HTML("+", elem_id="plus_button")
    with gr.Column(min_width=10, scale=6):
      lora_2 = gr.Image(interactive=False, height=350)
      lora_2_prompt = gr.Markdown()
  with gr.Row():
    prompt = gr.Textbox(label="Your prompt", info="arrange the trigger words of the two LoRAs in a coherent sentence", interactive=True, elem_id="prompt")
    run_btn = gr.Button("Run", elem_id="run_button")
  
  output_image = gr.Image()
  with gr.Accordion("Advanced settings", open=False):
    negative_prompt = gr.Textbox(label="Negative prompt")
    with gr.Row():
      lora_1_scale = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
      lora_2_scale = gr.Slider(label="LoRa 2 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
  shuffle_button = gr.Button("Reshuffle LoRAs!")
  
  demo.load(shuffle_images, inputs=[], outputs=[lora_1,lora_1_prompt,lora_2,lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden")
  shuffle_button.click(shuffle_images, outputs=[lora_1,lora_1_prompt,lora_2,lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden")

  run_btn.click(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image])
  prompt.submit(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image])
demo.queue()
demo.launch()