import os import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from diffusers.utils import load_image from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download import copy import random import time import requests import pandas as pd #Load prompts for randomization df = pd.read_csv('prompts.csv', header=None) prompt_values = df.values.flatten() # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) pipe_i2i = AutoPipelineForImage2Image.from_pretrained( base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype ) MAX_SEED = 2**32 - 1 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def download_file(url, directory=None): if directory is None: directory = os.getcwd() # Use current working directory if not specified # Get the filename from the URL filename = url.split('/')[-1] # Full path for the downloaded file filepath = os.path.join(directory, filename) # Download the file response = requests.get(url) response.raise_for_status() # Raise an exception for bad status codes # Write the content to the file with open(filepath, 'wb') as file: file.write(response.content) return filepath def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): selected_index = evt.index selected_indices = selected_indices or [] if selected_index in selected_indices: selected_indices.remove(selected_index) else: if len(selected_indices) < 2: selected_indices.append(selected_index) else: gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.") return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update() selected_info_1 = "Select a LoRA 1" selected_info_2 = "Select a LoRA 2" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = None lora_image_2 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if selected_indices: last_selected_lora = loras_state[selected_indices[-1]] new_placeholder = f"Type a prompt for {last_selected_lora['title']}" else: new_placeholder = "Type a prompt after selecting a LoRA" return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2 def remove_lora_1(selected_indices, loras_state): if len(selected_indices) >= 1: selected_indices.pop(0) selected_info_1 = "Select a LoRA 1" selected_info_2 = "Select a LoRA 2" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = None lora_image_2 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" lora_image_2 = lora2['image'] return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2 def remove_lora_2(selected_indices, loras_state): if len(selected_indices) >= 2: selected_indices.pop(1) selected_info_1 = "Select LoRA 1" selected_info_2 = "Select LoRA 2" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = None lora_image_2 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" lora_image_2 = lora2['image'] return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2 def randomize_loras(selected_indices, loras_state): if len(loras_state) < 2: raise gr.Error("Not enough LoRAs to randomize.") selected_indices = random.sample(range(len(loras_state)), 2) lora1 = loras_state[selected_indices[0]] lora2 = loras_state[selected_indices[1]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co./{lora1['repo']}) ✨" selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co./{lora2['repo']}) ✨" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = lora1['image'] lora_image_2 = lora2['image'] random_prompt = random.choice(prompt_values) return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt def add_custom_lora(custom_lora, selected_indices, current_loras, gallery): if custom_lora: try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) print(f"Loaded custom LoRA: {repo}") existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) if existing_item_index is None: if repo.endswith(".safetensors") and repo.startswith("http"): repo = download_file(repo) new_item = { "image": image if image else "/home/user/app/custom.png", "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word } print(f"New LoRA: {new_item}") existing_item_index = len(current_loras) current_loras.append(new_item) # Update gallery gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected_indices if there's room if len(selected_indices) < 2: selected_indices.append(existing_item_index) else: gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.") # Update selected_info and images selected_info_1 = "Select a LoRA 1" selected_info_2 = "Select a LoRA 2" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = None lora_image_2 = None if len(selected_indices) >= 1: lora1 = current_loras[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨" lora_image_1 = lora1['image'] if lora1['image'] else None if len(selected_indices) >= 2: lora2 = current_loras[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨" lora_image_2 = lora2['image'] if lora2['image'] else None print("Finished adding custom LoRA") return ( current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2 ) except Exception as e: print(e) gr.Warning(str(e)) return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update() else: return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update() def remove_custom_lora(selected_indices, current_loras, gallery): if current_loras: custom_lora_repo = current_loras[-1]['repo'] # Remove from loras list current_loras = current_loras[:-1] # Remove from selected_indices if selected custom_lora_index = len(current_loras) if custom_lora_index in selected_indices: selected_indices.remove(custom_lora_index) # Update gallery gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected_info and images selected_info_1 = "Select a LoRA 1" selected_info_2 = "Select a LoRA 2" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_image_1 = None lora_image_2 = None if len(selected_indices) >= 1: lora1 = current_loras[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = current_loras[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" lora_image_2 = lora2['image'] return ( current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2 ) @spaces.GPU(duration=75) def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress): print("Generating image...") pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": 1.0}, output_type="pil", good_vae=good_vae, ): yield img @spaces.GPU(duration=75) def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed): pipe_i2i.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) image_input = load_image(image_input_path) final_image = pipe_i2i( prompt=prompt_mash, image=image_input, strength=image_strength, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": 1.0}, output_type="pil", ).images[0] return final_image def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)): if not selected_indices: raise gr.Error("You must select at least one LoRA before proceeding.") selected_loras = [loras_state[idx] for idx in selected_indices] # Build the prompt with trigger words prepends = [] appends = [] for lora in selected_loras: trigger_word = lora.get('trigger_word', '') if trigger_word: if lora.get("trigger_position") == "prepend": prepends.append(trigger_word) else: appends.append(trigger_word) prompt_mash = " ".join(prepends + [prompt] + appends) print("Prompt Mash: ", prompt_mash) # Unload previous LoRA weights with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() pipe_i2i.unload_lora_weights() print(pipe.get_active_adapters()) # Load LoRA weights with respective scales lora_names = [] lora_weights = [] with calculateDuration("Loading LoRA weights"): for idx, lora in enumerate(selected_loras): lora_name = f"lora_{idx}" lora_names.append(lora_name) print(f"Lora Name: {lora_name}") lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2) lora_path = lora['repo'] weight_name = lora.get("weights") print(f"Lora Path: {lora_path}") pipe_to_use = pipe_i2i if image_input is not None else pipe pipe_to_use.load_lora_weights( lora_path, weight_name=weight_name if weight_name else None, low_cpu_mem_usage=False, adapter_name=lora_name ) if image_input is not None: pipe_i2i = pipe_to_use else: pipe = pipe_to_use print("Loaded LoRAs:", lora_names) print("Adapter weights:", lora_weights) if image_input is not None: pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights) else: pipe.set_adapters(lora_names, adapter_weights=lora_weights) print(pipe.get_active_adapters()) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) # Generate image if image_input is not None: final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed) yield final_image, seed, gr.update(visible=False) else: image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) # Consume the generator to get the final image final_image = None step_counter = 0 for image in image_generator: step_counter += 1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) yield final_image, seed, gr.update(value=progress_bar, visible=False) run_lora.zerogpu = True def get_huggingface_safetensors(link): split_link = link.split("/") if len(split_link) == 2: model_card = ModelCard.load(link) base_model = model_card.data.get("base_model") print(f"Base model: {base_model}") if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: raise Exception("Not a FLUX LoRA!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co./{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() safetensors_name = None try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if file.endswith(".safetensors"): safetensors_name = file.split("/")[-1] if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): image_elements = file.split("/") image_url = f"https://huggingface.co./{link}/resolve/main/{image_elements[-1]}" except Exception as e: print(e) raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") if not safetensors_name: raise gr.Error("No *.safetensors file found in the repository") return split_link[1], link, safetensors_name, trigger_word, image_url else: raise gr.Error("Invalid Hugging Face repository link") def check_custom_model(link): if link.endswith(".safetensors"): # Treat as direct link to the LoRA weights title = os.path.basename(link) repo = link path = None # No specific weight name trigger_word = "" image_url = None return title, repo, path, trigger_word, image_url elif link.startswith("https://"): if "huggingface.co" in link: link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) else: raise Exception("Unsupported URL") else: # Assume it's a Hugging Face model path return get_huggingface_safetensors(link) def update_history(new_image, history): """Updates the history gallery with the new image.""" if history is None: history = [] history.insert(0, new_image) return history css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 3em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.25em} #gallery .grid-wrap{height: 5vh} #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} .custom_lora_card{margin-bottom: 1em} .card_internal{display: flex;height: 100px;margin-top: .5em} .card_internal img{margin-right: 1em} .styler{--form-gap-width: 0px !important} #progress{height:30px} #progress .generating{display:none} .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} #component-8, .button_total{height: 100%; align-self: stretch;} #loaded_loras [data-testid="block-info"]{font-size:80%} #custom_lora_structure{background: var(--block-background-fill)} #custom_lora_btn{margin-top: auto;margin-bottom: 11px} #random_btn{font-size: 300%} #component-11{align-self: stretch;} ''' with gr.Blocks(css=css, delete_cache=(60, 3600)) as app: title = gr.HTML( """

LoRA LoRA Lab [beta]


Mix and match any FLUX[dev] LoRAs""", elem_id="title", ) loras_state = gr.State(loras) selected_indices = gr.State([]) with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") with gr.Column(scale=1): generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) with gr.Row(elem_id="loaded_loras"): with gr.Column(scale=1, min_width=25): randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_1 = gr.Markdown("Select a LoRA 1") with gr.Column(scale=5, min_width=50): lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15) with gr.Row(): remove_button_1 = gr.Button("Remove", size="sm") with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_2 = gr.Markdown("Select a LoRA 2") with gr.Column(scale=5, min_width=50): lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15) with gr.Row(): remove_button_2 = gr.Button("Remove", size="sm") with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(elem_id="custom_lora_structure"): custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150) add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co./models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="Or pick from the LoRA Explorer gallery", allow_preview=False, columns=5, elem_id="gallery", show_share_button=False, interactive=False ) with gr.Column(): progress_bar = gr.Markdown(elem_id="progress", visible=False) result = gr.Image(label="Generated Image", interactive=False, show_share_button=False) with gr.Accordion("History", open=False): history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) with gr.Row(): with gr.Accordion("Advanced Settings", open=False): with gr.Row(): input_image = gr.Image(label="Input image", type="filepath", show_share_button=False) image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) gallery.select( update_selection, inputs=[selected_indices, loras_state, width, height], outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]) remove_button_1.click( remove_lora_1, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] ) remove_button_2.click( remove_lora_2, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] ) randomize_button.click( randomize_loras, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt] ) add_custom_lora_button.click( add_custom_lora, inputs=[custom_lora, selected_indices, loras_state, gallery], outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] ) remove_custom_lora_button.click( remove_custom_lora, inputs=[selected_indices, loras_state, gallery], outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] ) gr.on( triggers=[generate_button.click, prompt.submit], fn=run_lora, inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state], outputs=[result, seed, progress_bar] ).then( fn=lambda x, history: update_history(x, history), inputs=[result, history_gallery], outputs=history_gallery, ) app.queue() app.launch()