multimodalart HF staff commited on
Commit
d3f1c7e
·
verified ·
1 Parent(s): 46d23be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -27
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  import torch
3
- from diffusers import AutoencoderKL, FluxTransformer2DModel
4
  from diffusers.utils import load_image
5
  from controlnet_flux import FluxControlNetModel
6
  from transformer_flux import FluxTransformer2DModel
@@ -12,26 +12,13 @@ import spaces
12
  from huggingface_hub import hf_hub_download
13
  from optimum.quanto import freeze, qfloat8, quantize
14
 
15
-
16
- controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
17
- transformer = FluxTransformer2DModel.from_pretrained(
18
- "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16
19
- )
20
-
21
- pipe = FluxControlNetInpaintingPipeline.from_pretrained(
22
- "black-forest-labs/FLUX.1-dev",
23
- transformer=transformer,
24
- controlnet=controlnet,
25
  torch_dtype=torch.bfloat16
26
- )
27
-
28
- repo_name = "ByteDance/Hyper-SD"
29
- ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
30
- pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
31
- pipe.fuse_lora(lora_scale=0.125)
32
- pipe.transformer.to(torch.bfloat16)
33
- pipe.controlnet.to(torch.bfloat16)
34
  pipe.to("cuda")
 
35
  def can_expand(source_width, source_height, target_width, target_height, alignment):
36
  if alignment in ("Left", "Right") and source_width >= target_width:
37
  return False
@@ -147,7 +134,7 @@ def inpaint(image, width, height, overlap_percentage, num_inference_steps, resiz
147
  cnet_image = background.copy()
148
  cnet_image.paste(0, (0, 0), mask)
149
 
150
- final_prompt = f"{prompt_input} , high quality, 4k"
151
 
152
  #generator = torch.Generator(device="cuda").manual_seed(42)
153
 
@@ -155,14 +142,10 @@ def inpaint(image, width, height, overlap_percentage, num_inference_steps, resiz
155
  prompt=final_prompt,
156
  height=height,
157
  width=width,
158
- control_image=cnet_image,
159
- control_mask=mask,
160
  num_inference_steps=num_inference_steps,
161
- #generator=generator,
162
- controlnet_conditioning_scale=0.9,
163
- guidance_scale=3.5,
164
- negative_prompt="",
165
- true_guidance_scale=3.5,
166
  ).images[0]
167
 
168
  result = result.convert("RGBA")
 
1
  import gradio as gr
2
  import torch
3
+ from diffusers import AutoencoderKL, FluxTransformer2DModel, FluxFillPipeline
4
  from diffusers.utils import load_image
5
  from controlnet_flux import FluxControlNetModel
6
  from transformer_flux import FluxTransformer2DModel
 
12
  from huggingface_hub import hf_hub_download
13
  from optimum.quanto import freeze, qfloat8, quantize
14
 
15
+ pipe = FluxFillPipeline.from_pretrained(
16
+ "black-forest-labs/FLUX.1-Fill-dev",
 
 
 
 
 
 
 
 
17
  torch_dtype=torch.bfloat16
18
+ ).to("cuda")
19
+
 
 
 
 
 
 
20
  pipe.to("cuda")
21
+
22
  def can_expand(source_width, source_height, target_width, target_height, alignment):
23
  if alignment in ("Left", "Right") and source_width >= target_width:
24
  return False
 
134
  cnet_image = background.copy()
135
  cnet_image.paste(0, (0, 0), mask)
136
 
137
+ final_prompt = prompt_input
138
 
139
  #generator = torch.Generator(device="cuda").manual_seed(42)
140
 
 
142
  prompt=final_prompt,
143
  height=height,
144
  width=width,
145
+ image=cnet_image,
146
+ mask_image=mask,
147
  num_inference_steps=num_inference_steps,
148
+ guidance_scale=30,
 
 
 
 
149
  ).images[0]
150
 
151
  result = result.convert("RGBA")