Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import AutoencoderKL, FluxTransformer2DModel
|
4 |
from diffusers.utils import load_image
|
5 |
from controlnet_flux import FluxControlNetModel
|
6 |
from transformer_flux import FluxTransformer2DModel
|
@@ -12,26 +12,13 @@ import spaces
|
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
from optimum.quanto import freeze, qfloat8, quantize
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
transformer = FluxTransformer2DModel.from_pretrained(
|
18 |
-
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16
|
19 |
-
)
|
20 |
-
|
21 |
-
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
22 |
-
"black-forest-labs/FLUX.1-dev",
|
23 |
-
transformer=transformer,
|
24 |
-
controlnet=controlnet,
|
25 |
torch_dtype=torch.bfloat16
|
26 |
-
)
|
27 |
-
|
28 |
-
repo_name = "ByteDance/Hyper-SD"
|
29 |
-
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
30 |
-
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
31 |
-
pipe.fuse_lora(lora_scale=0.125)
|
32 |
-
pipe.transformer.to(torch.bfloat16)
|
33 |
-
pipe.controlnet.to(torch.bfloat16)
|
34 |
pipe.to("cuda")
|
|
|
35 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
36 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
37 |
return False
|
@@ -147,7 +134,7 @@ def inpaint(image, width, height, overlap_percentage, num_inference_steps, resiz
|
|
147 |
cnet_image = background.copy()
|
148 |
cnet_image.paste(0, (0, 0), mask)
|
149 |
|
150 |
-
final_prompt =
|
151 |
|
152 |
#generator = torch.Generator(device="cuda").manual_seed(42)
|
153 |
|
@@ -155,14 +142,10 @@ def inpaint(image, width, height, overlap_percentage, num_inference_steps, resiz
|
|
155 |
prompt=final_prompt,
|
156 |
height=height,
|
157 |
width=width,
|
158 |
-
|
159 |
-
|
160 |
num_inference_steps=num_inference_steps,
|
161 |
-
|
162 |
-
controlnet_conditioning_scale=0.9,
|
163 |
-
guidance_scale=3.5,
|
164 |
-
negative_prompt="",
|
165 |
-
true_guidance_scale=3.5,
|
166 |
).images[0]
|
167 |
|
168 |
result = result.convert("RGBA")
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import AutoencoderKL, FluxTransformer2DModel, FluxFillPipeline
|
4 |
from diffusers.utils import load_image
|
5 |
from controlnet_flux import FluxControlNetModel
|
6 |
from transformer_flux import FluxTransformer2DModel
|
|
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
from optimum.quanto import freeze, qfloat8, quantize
|
14 |
|
15 |
+
pipe = FluxFillPipeline.from_pretrained(
|
16 |
+
"black-forest-labs/FLUX.1-Fill-dev",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
torch_dtype=torch.bfloat16
|
18 |
+
).to("cuda")
|
19 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
pipe.to("cuda")
|
21 |
+
|
22 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
23 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
24 |
return False
|
|
|
134 |
cnet_image = background.copy()
|
135 |
cnet_image.paste(0, (0, 0), mask)
|
136 |
|
137 |
+
final_prompt = prompt_input
|
138 |
|
139 |
#generator = torch.Generator(device="cuda").manual_seed(42)
|
140 |
|
|
|
142 |
prompt=final_prompt,
|
143 |
height=height,
|
144 |
width=width,
|
145 |
+
image=cnet_image,
|
146 |
+
mask_image=mask,
|
147 |
num_inference_steps=num_inference_steps,
|
148 |
+
guidance_scale=30,
|
|
|
|
|
|
|
|
|
149 |
).images[0]
|
150 |
|
151 |
result = result.convert("RGBA")
|