Commit
•
62ee77b
1
Parent(s):
bc47650
Remove old conversion script
Browse files- convertosd_ld.py +0 -226
convertosd_ld.py
DELETED
@@ -1,226 +0,0 @@
|
|
1 |
-
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
-
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
-
# Does not convert optimizer state or any other thing.
|
4 |
-
# Written by jachiam
|
5 |
-
|
6 |
-
import argparse
|
7 |
-
import os.path as osp
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import gc
|
11 |
-
|
12 |
-
# =================#
|
13 |
-
# UNet Conversion #
|
14 |
-
# =================#
|
15 |
-
|
16 |
-
unet_conversion_map = [
|
17 |
-
# (stable-diffusion, HF Diffusers)
|
18 |
-
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
19 |
-
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
20 |
-
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
21 |
-
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
22 |
-
("input_blocks.0.0.weight", "conv_in.weight"),
|
23 |
-
("input_blocks.0.0.bias", "conv_in.bias"),
|
24 |
-
("out.0.weight", "conv_norm_out.weight"),
|
25 |
-
("out.0.bias", "conv_norm_out.bias"),
|
26 |
-
("out.2.weight", "conv_out.weight"),
|
27 |
-
("out.2.bias", "conv_out.bias"),
|
28 |
-
]
|
29 |
-
|
30 |
-
unet_conversion_map_resnet = [
|
31 |
-
# (stable-diffusion, HF Diffusers)
|
32 |
-
("in_layers.0", "norm1"),
|
33 |
-
("in_layers.2", "conv1"),
|
34 |
-
("out_layers.0", "norm2"),
|
35 |
-
("out_layers.3", "conv2"),
|
36 |
-
("emb_layers.1", "time_emb_proj"),
|
37 |
-
("skip_connection", "conv_shortcut"),
|
38 |
-
]
|
39 |
-
|
40 |
-
unet_conversion_map_layer = []
|
41 |
-
# hardcoded number of downblocks and resnets/attentions...
|
42 |
-
# would need smarter logic for other networks.
|
43 |
-
for i in range(4):
|
44 |
-
# loop over downblocks/upblocks
|
45 |
-
|
46 |
-
for j in range(2):
|
47 |
-
# loop over resnets/attentions for downblocks
|
48 |
-
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
49 |
-
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
50 |
-
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
51 |
-
|
52 |
-
if i < 3:
|
53 |
-
# no attention layers in down_blocks.3
|
54 |
-
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
55 |
-
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
56 |
-
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
57 |
-
|
58 |
-
for j in range(3):
|
59 |
-
# loop over resnets/attentions for upblocks
|
60 |
-
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
61 |
-
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
62 |
-
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
63 |
-
|
64 |
-
if i > 0:
|
65 |
-
# no attention layers in up_blocks.0
|
66 |
-
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
67 |
-
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
68 |
-
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
69 |
-
|
70 |
-
if i < 3:
|
71 |
-
# no downsample in down_blocks.3
|
72 |
-
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
73 |
-
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
74 |
-
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
75 |
-
|
76 |
-
# no upsample in up_blocks.3
|
77 |
-
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
78 |
-
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
79 |
-
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
80 |
-
|
81 |
-
hf_mid_atn_prefix = "mid_block.attentions.0."
|
82 |
-
sd_mid_atn_prefix = "middle_block.1."
|
83 |
-
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
84 |
-
|
85 |
-
for j in range(2):
|
86 |
-
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
87 |
-
sd_mid_res_prefix = f"middle_block.{2*j}."
|
88 |
-
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
89 |
-
|
90 |
-
|
91 |
-
def convert_unet_state_dict(unet_state_dict):
|
92 |
-
# buyer beware: this is a *brittle* function,
|
93 |
-
# and correct output requires that all of these pieces interact in
|
94 |
-
# the exact order in which I have arranged them.
|
95 |
-
mapping = {k: k for k in unet_state_dict.keys()}
|
96 |
-
for sd_name, hf_name in unet_conversion_map:
|
97 |
-
mapping[hf_name] = sd_name
|
98 |
-
for k, v in mapping.items():
|
99 |
-
if "resnets" in k:
|
100 |
-
for sd_part, hf_part in unet_conversion_map_resnet:
|
101 |
-
v = v.replace(hf_part, sd_part)
|
102 |
-
mapping[k] = v
|
103 |
-
for k, v in mapping.items():
|
104 |
-
for sd_part, hf_part in unet_conversion_map_layer:
|
105 |
-
v = v.replace(hf_part, sd_part)
|
106 |
-
mapping[k] = v
|
107 |
-
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
108 |
-
return new_state_dict
|
109 |
-
|
110 |
-
|
111 |
-
# ================#
|
112 |
-
# VAE Conversion #
|
113 |
-
# ================#
|
114 |
-
|
115 |
-
vae_conversion_map = [
|
116 |
-
# (stable-diffusion, HF Diffusers)
|
117 |
-
("nin_shortcut", "conv_shortcut"),
|
118 |
-
("norm_out", "conv_norm_out"),
|
119 |
-
("mid.attn_1.", "mid_block.attentions.0."),
|
120 |
-
]
|
121 |
-
|
122 |
-
for i in range(4):
|
123 |
-
# down_blocks have two resnets
|
124 |
-
for j in range(2):
|
125 |
-
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
126 |
-
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
127 |
-
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
128 |
-
|
129 |
-
if i < 3:
|
130 |
-
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
131 |
-
sd_downsample_prefix = f"down.{i}.downsample."
|
132 |
-
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
133 |
-
|
134 |
-
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
135 |
-
sd_upsample_prefix = f"up.{3-i}.upsample."
|
136 |
-
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
137 |
-
|
138 |
-
# up_blocks have three resnets
|
139 |
-
# also, up blocks in hf are numbered in reverse from sd
|
140 |
-
for j in range(3):
|
141 |
-
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
142 |
-
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
143 |
-
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
144 |
-
|
145 |
-
# this part accounts for mid blocks in both the encoder and the decoder
|
146 |
-
for i in range(2):
|
147 |
-
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
148 |
-
sd_mid_res_prefix = f"mid.block_{i+1}."
|
149 |
-
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
150 |
-
|
151 |
-
|
152 |
-
vae_conversion_map_attn = [
|
153 |
-
# (stable-diffusion, HF Diffusers)
|
154 |
-
("norm.", "group_norm."),
|
155 |
-
("q.", "query."),
|
156 |
-
("k.", "key."),
|
157 |
-
("v.", "value."),
|
158 |
-
("proj_out.", "proj_attn."),
|
159 |
-
]
|
160 |
-
|
161 |
-
|
162 |
-
def reshape_weight_for_sd(w):
|
163 |
-
# convert HF linear weights to SD conv2d weights
|
164 |
-
return w.reshape(*w.shape, 1, 1)
|
165 |
-
|
166 |
-
|
167 |
-
def convert_vae_state_dict(vae_state_dict):
|
168 |
-
mapping = {k: k for k in vae_state_dict.keys()}
|
169 |
-
for k, v in mapping.items():
|
170 |
-
for sd_part, hf_part in vae_conversion_map:
|
171 |
-
v = v.replace(hf_part, sd_part)
|
172 |
-
mapping[k] = v
|
173 |
-
for k, v in mapping.items():
|
174 |
-
if "attentions" in k:
|
175 |
-
for sd_part, hf_part in vae_conversion_map_attn:
|
176 |
-
v = v.replace(hf_part, sd_part)
|
177 |
-
mapping[k] = v
|
178 |
-
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
179 |
-
weights_to_convert = ["q", "k", "v", "proj_out"]
|
180 |
-
print("[1;32mConverting to CKPT ...")
|
181 |
-
for k, v in new_state_dict.items():
|
182 |
-
for weight_name in weights_to_convert:
|
183 |
-
if f"mid.attn_1.{weight_name}.weight" in k:
|
184 |
-
new_state_dict[k] = reshape_weight_for_sd(v)
|
185 |
-
return new_state_dict
|
186 |
-
|
187 |
-
|
188 |
-
# =========================#
|
189 |
-
# Text Encoder Conversion #
|
190 |
-
# =========================#
|
191 |
-
# pretty much a no-op
|
192 |
-
|
193 |
-
|
194 |
-
def convert_text_enc_state_dict(text_enc_dict):
|
195 |
-
return text_enc_dict
|
196 |
-
|
197 |
-
|
198 |
-
def convert(model_path, checkpoint_path):
|
199 |
-
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
200 |
-
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
201 |
-
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
202 |
-
|
203 |
-
# Convert the UNet model
|
204 |
-
unet_state_dict = torch.load(unet_path, map_location='cpu')
|
205 |
-
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
206 |
-
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
207 |
-
|
208 |
-
# Convert the VAE model
|
209 |
-
vae_state_dict = torch.load(vae_path, map_location='cpu')
|
210 |
-
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
211 |
-
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
212 |
-
|
213 |
-
# Convert the text encoder model
|
214 |
-
text_enc_dict = torch.load(text_enc_path, map_location='cpu')
|
215 |
-
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
216 |
-
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
217 |
-
|
218 |
-
# Put together new checkpoint
|
219 |
-
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
220 |
-
|
221 |
-
state_dict = {k:v.half() for k,v in state_dict.items()}
|
222 |
-
state_dict = {"state_dict": state_dict}
|
223 |
-
torch.save(state_dict, checkpoint_path)
|
224 |
-
del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
|
225 |
-
torch.cuda.empty_cache()
|
226 |
-
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|