|
import gradio as gr |
|
import os |
|
from pathlib import Path |
|
import argparse |
|
import shutil |
|
from train_dreambooth import run_training |
|
from converttosd import convert |
|
from PIL import Image |
|
import torch |
|
|
|
css = ''' |
|
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} |
|
.arrow{position: absolute;top: 0;right: -8px;margin-top: -8px !important} |
|
#component-4, #component-3, #component-10{min-height: 0} |
|
''' |
|
shutil.unpack_archive("mix.zip", "mix") |
|
model_to_load = "multimodalart/sd-fine-tunable" |
|
maximum_concepts = 3 |
|
def swap_values_files(*total_files): |
|
file_counter = 0 |
|
for files in total_files: |
|
if(files): |
|
for file in files: |
|
filename = Path(file.orig_name).stem |
|
pt=''.join([i for i in filename if not i.isdigit()]) |
|
pt=pt.replace("_"," ") |
|
pt=pt.replace("(","") |
|
pt=pt.replace(")","") |
|
instance_prompt = pt |
|
print(instance_prompt) |
|
file_counter += 1 |
|
training_steps = (file_counter*200) |
|
return training_steps |
|
|
|
def swap_text(option): |
|
mandatory_liability = "You must have the right to do so and you are liable for the images you use" |
|
if(option == "object"): |
|
instance_prompt_example = "cttoy" |
|
freeze_for = 50 |
|
return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] |
|
elif(option == "person"): |
|
instance_prompt_example = "julcto" |
|
freeze_for = 100 |
|
return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] |
|
elif(option == "style"): |
|
instance_prompt_example = "trsldamrl" |
|
freeze_for = 10 |
|
return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''<img src="file/trsl_style.png" />''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] |
|
|
|
def train(*inputs): |
|
if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip") |
|
if os.path.exists("model.ckpt"): os.remove("model.ckpt") |
|
file_counter = 0 |
|
for i, input in enumerate(inputs): |
|
if(i < maximum_concepts-1): |
|
if(input): |
|
os.makedirs('instance_images',exist_ok=True) |
|
files = inputs[i+(maximum_concepts*2)] |
|
prompt = inputs[i+maximum_concepts] |
|
for j, file_temp in enumerate(files): |
|
file = Image.open(file_temp.name) |
|
width, height = file.size |
|
side_length = min(width, height) |
|
left = (width - side_length)/2 |
|
top = (height - side_length)/2 |
|
right = (width + side_length)/2 |
|
bottom = (height + side_length)/2 |
|
image = file.crop((left, top, right, bottom)) |
|
image = image.resize((512, 512)) |
|
extension = file_temp.name.split(".")[1] |
|
image = image.convert('RGB') |
|
image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100) |
|
file_counter += 1 |
|
|
|
os.makedirs('output_model',exist_ok=True) |
|
uses_custom = inputs[-1] |
|
type_of_thing = inputs[-4] |
|
if(uses_custom): |
|
Training_Steps = int(inputs[-3]) |
|
Train_text_encoder_for = int(inputs[-2]) |
|
else: |
|
Training_Steps = file_counter*200 |
|
if(type_of_thing == "person"): |
|
class_data_dir = "mix" |
|
Train_text_encoder_for=100 |
|
args_txt_encoder = argparse.Namespace( |
|
image_captions_filename = True, |
|
train_text_encoder = True, |
|
pretrained_model_name_or_path=model_to_load, |
|
instance_data_dir="instance_images", |
|
class_data_dir=class_data_dir, |
|
output_dir="output_model", |
|
with_prior_preservation=True, |
|
prior_loss_weight=1.0, |
|
instance_prompt="", |
|
seed=42, |
|
resolution=512, |
|
mixed_precision="fp16", |
|
train_batch_size=1, |
|
gradient_accumulation_steps=1, |
|
gradient_checkpointing=True, |
|
use_8bit_adam=True, |
|
learning_rate=2e-6, |
|
lr_scheduler="polynomial", |
|
lr_warmup_steps=0, |
|
max_train_steps=Training_Steps, |
|
num_class_images=200 |
|
) |
|
args_unet = argparse.Namespace( |
|
image_captions_filename = True, |
|
train_only_unet=True, |
|
Session_dir="output_model", |
|
save_starting_step=0, |
|
save_n_steps=0, |
|
pretrained_model_name_or_path=model_to_load, |
|
instance_data_dir="instance_images", |
|
output_dir="output_model", |
|
instance_prompt="", |
|
seed=42, |
|
resolution=512, |
|
mixed_precision="fp16", |
|
train_batch_size=1, |
|
gradient_accumulation_steps=1, |
|
gradient_checkpointing=False, |
|
use_8bit_adam=True, |
|
learning_rate=2e-6, |
|
lr_scheduler="polynomial", |
|
lr_warmup_steps=0, |
|
max_train_steps=Training_Steps |
|
) |
|
run_training(args_txt_encoder) |
|
run_training(args_unet) |
|
elif(type_of_thing == "object" or type_of_thing == "style"): |
|
if(type_of_thing == "object"): |
|
Train_text_encoder_for=30 |
|
elif(type_of_thing == "style"): |
|
Train_text_encoder_for=15 |
|
class_data_dir = None |
|
stptxt = int((Training_Steps*Train_text_encoder_for)/100) |
|
args_general = argparse.Namespace( |
|
image_captions_filename = True, |
|
train_text_encoder = True, |
|
stop_text_encoder_training = stptxt, |
|
save_n_steps = 0, |
|
pretrained_model_name_or_path = model_to_load, |
|
instance_data_dir="instance_images", |
|
class_data_dir=class_data_dir, |
|
output_dir="output_model", |
|
instance_prompt="", |
|
seed=42, |
|
resolution=512, |
|
mixed_precision="fp16", |
|
train_batch_size=1, |
|
gradient_accumulation_steps=1, |
|
use_8bit_adam=True, |
|
learning_rate=2e-6, |
|
lr_scheduler="polynomial", |
|
lr_warmup_steps = 0, |
|
max_train_steps=Training_Steps, |
|
) |
|
run_training(args_general) |
|
convert("output_model", "model.ckpt") |
|
shutil.rmtree('instance_images') |
|
shutil.make_archive("diffusers_model", 'zip', "output_model") |
|
shutil.rmtree("output_model") |
|
torch.cuda.empty_cache() |
|
return [gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"]), gr.update(visible=True), gr.update(visible=True)] |
|
|
|
def generate(prompt): |
|
from diffusers import StableDiffusionPipeline |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
image = pipe(prompt).images[0] |
|
return(image) |
|
|
|
def push_button(path): |
|
pass |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Box(): |
|
if "IS_SHARED_UI" in os.environ: |
|
gr.HTML(''' |
|
<div class="gr-prose" style="max-width: 80%"> |
|
<h2>Attention - This Space doesn't work in this shared UI</h2> |
|
<p>For it to work, you have to duplicate the Space and run it on your own profile where a (paid) private GPU will be attributed to it during runtime. It will cost you < US$1 to train a model on default settings! 🤑</p> |
|
<img class="instruction" src="file/duplicate.png"> |
|
<img class="arrow" src="file/arrow.png" /> |
|
</div> |
|
''') |
|
gr.Markdown("# Dreambooth training") |
|
gr.Markdown("Customize Stable Diffusion by giving it with few-shot examples") |
|
with gr.Row(): |
|
type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
thing_description = gr.Markdown("You are going to train an `object`, upload 5-10 images of the object you are planning on training on from different angles/perspectives. You must have the right to do so and you are liable for the images you use") |
|
thing_image_example = gr.HTML('''<img src="file/cat-toy.png" />''') |
|
things_naming = gr.Markdown("You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `cttoy` here). Images will be automatically cropped to 512x512.") |
|
with gr.Column(): |
|
file_collection = [] |
|
concept_collection = [] |
|
buttons_collection = [] |
|
delete_collection = [] |
|
is_visible = [] |
|
|
|
row = [None] * maximum_concepts |
|
for x in range(maximum_concepts): |
|
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4]) |
|
if(x == 0): |
|
visible = True |
|
is_visible.append(gr.State(value=True)) |
|
else: |
|
visible = False |
|
is_visible.append(gr.State(value=False)) |
|
|
|
file_collection.append(gr.File(label=f"Upload the images for your {ordinal(x+1)} concept", file_count="multiple", interactive=True, visible=visible)) |
|
with gr.Column(visible=visible) as row[x]: |
|
concept_collection.append(gr.Textbox(label=f"{ordinal(x+1)} concept prompt - use a unique, made up word to avoid collisions")) |
|
with gr.Row(): |
|
if(x < maximum_concepts-1): |
|
buttons_collection.append(gr.Button(value="Add +1 concept", visible=visible)) |
|
if(x > 0): |
|
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept")) |
|
|
|
counter_add = 1 |
|
for button in buttons_collection: |
|
if(counter_add < len(buttons_collection)): |
|
button.click(lambda: |
|
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None], |
|
None, |
|
[row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], file_collection[counter_add]]) |
|
else: |
|
button.click(lambda:[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True], None, [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]]) |
|
counter_add += 1 |
|
|
|
counter_delete = 1 |
|
for delete_button in delete_collection: |
|
if(counter_delete < len(delete_collection)+1): |
|
delete_button.click(lambda:[gr.update(visible=False),gr.update(visible=False), gr.update(visible=True), False], None, [file_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]]) |
|
counter_delete += 1 |
|
|
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
swap_auto_calculated = gr.Checkbox(label="Use these advanced setting") |
|
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style`.") |
|
steps = gr.Number(label="How many steps", value=800) |
|
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30) |
|
|
|
|
|
|
|
|
|
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder]) |
|
train_btn = gr.Button("Start Training") |
|
with gr.Box(visible=False) as try_your_model: |
|
gr.Markdown("Try your model") |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Type your prompt") |
|
result = gr.Image() |
|
generate_button = gr.Button("Generate Image") |
|
with gr.Box(visible=False) as push_to_hub: |
|
gr.Markdown("Push to Hugging Face Hub") |
|
model_repo_tag = gr.Textbox(label="Model name or URL", placeholder="username/model_name") |
|
push_button = gr.Button("Push to the Hub") |
|
result = gr.File(label="Download the uploaded models (zip file are diffusers weights, *.ckpt are CompVis/AUTOMATIC1111 weights)", visible=True) |
|
train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[result, try_your_model, push_to_hub]) |
|
generate_button.click(fn=generate, inputs=prompt, outputs=result) |
|
push_button.click(fn=push_to_hub, inputs=model_repo_tag, outputs=[]) |
|
demo.launch() |