File size: 18,215 Bytes
6b5dfe6 bfdbdf6 182990e b3d3b2f 666a605 ded3b8b 6b5dfe6 b3d3b2f bfdbdf6 6028c08 bfdbdf6 843cf9f bfdbdf6 c4b99ca bfdbdf6 c4b99ca bfdbdf6 c4b99ca bfdbdf6 c4b99ca bfdbdf6 ac586a8 666a605 ac586a8 666a605 ac586a8 666a605 c24dac7 666a605 c9de947 bfdbdf6 666a605 b3d3b2f ded3b8b 22d5d2c bfdbdf6 9255bd7 bfdbdf6 d1c3953 bfdbdf6 9465fd2 bfdbdf6 666a605 d1c3953 666a605 126bc9f cb024a4 666a605 c9de947 ded3b8b ac586a8 c9de947 666a605 d1c3953 ac586a8 cb024a4 6b5dfe6 c4b99ca 843cf9f c4b99ca ac586a8 843cf9f ac586a8 6b5dfe6 bfdbdf6 6b5dfe6 bfdbdf6 c4b99ca 6b5dfe6 843cf9f bfdbdf6 c4b99ca bfdbdf6 6b5dfe6 bfdbdf6 4a499a4 bfdbdf6 4a499a4 bfdbdf6 4a499a4 bfdbdf6 666a605 bfdbdf6 b3d3b2f 62bbb3e ac586a8 5378dfe c24dac7 5378dfe bfdbdf6 9255bd7 666a605 9255bd7 666a605 9255bd7 666a605 9255bd7 ac586a8 666a605 ac586a8 cb024a4 ac586a8 666a605 ac586a8 6b5dfe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import gradio as gr
import os
from pathlib import Path
import argparse
import shutil
from train_dreambooth import run_training
from convertosd import convert
from PIL import Image
from slugify import slugify
import requests
import torch
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -8px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
'''
model_to_load = "multimodalart/sd-fine-tunable"
maximum_concepts = 3
#Pre download the files even if we don't use it here
StableDiffusionPipeline.from_pretrained(model_to_load)
def swap_text(option):
mandatory_liability = "You must have the right to do so and you are liable for the images you use, example:"
if(option == "object"):
instance_prompt_example = "cttoy"
freeze_for = 50
return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
elif(option == "person"):
instance_prompt_example = "julcto"
freeze_for = 100
return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/person.png" />''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
elif(option == "style"):
instance_prompt_example = "trsldamrl"
freeze_for = 10
return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''<img src="file/trsl_style.png" />''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for]
def count_files(*inputs):
file_counter = 0
concept_counter = 0
for i, input in enumerate(inputs):
if(i < maximum_concepts-1):
files = inputs[i]
if(files):
concept_counter+=1
file_counter+=len(files)
uses_custom = inputs[-1]
type_of_thing = inputs[-4]
if(uses_custom):
Training_Steps = int(inputs[-3])
else:
if(type_of_thing == "person"):
Training_Steps = file_counter*200*2
else:
Training_Steps = file_counter*200
return(gr.update(visible=True, value=f"You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. This should take around {round(Training_Steps/1.5, 2)} seconds, or {round((Training_Steps/1.5)/3600, 2)} hours. As a reminder, the T4 GPU costs US$0.60 for 1h. Once training is over, don't forget to swap the hardware back to CPU."))
def train(*inputs):
if "IS_SHARED_UI" in os.environ:
raise gr.Error("This Space only works in duplicated instances")
if os.path.exists("output_model"): shutil.rmtree('output_model')
if os.path.exists("instance_images"): shutil.rmtree('instance_images')
if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip")
if os.path.exists("model.ckpt"): os.remove("model.ckpt")
file_counter = 0
for i, input in enumerate(inputs):
if(i < maximum_concepts-1):
if(input):
os.makedirs('instance_images',exist_ok=True)
files = inputs[i+(maximum_concepts*2)]
prompt = inputs[i+maximum_concepts]
if(prompt == "" or prompt == None):
raise gr.Error("You forgot to define your concept prompt")
for j, file_temp in enumerate(files):
file = Image.open(file_temp.name)
width, height = file.size
side_length = min(width, height)
left = (width - side_length)/2
top = (height - side_length)/2
right = (width + side_length)/2
bottom = (height + side_length)/2
image = file.crop((left, top, right, bottom))
image = image.resize((512, 512))
extension = file_temp.name.split(".")[1]
image = image.convert('RGB')
image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100)
file_counter += 1
os.makedirs('output_model',exist_ok=True)
uses_custom = inputs[-1]
type_of_thing = inputs[-4]
if(uses_custom):
Training_Steps = int(inputs[-3])
Train_text_encoder_for = int(inputs[-2])
else:
Training_Steps = file_counter*200
if(type_of_thing == "object"):
Train_text_encoder_for=30
elif(type_of_thing == "person"):
Train_text_encoder_for=60
elif(type_of_thing == "style"):
Train_text_encoder_for=15
class_data_dir = None
stptxt = int((Training_Steps*Train_text_encoder_for)/100)
args_general = argparse.Namespace(
image_captions_filename = True,
train_text_encoder = True,
stop_text_encoder_training = stptxt,
save_n_steps = 0,
pretrained_model_name_or_path = model_to_load,
instance_data_dir="instance_images",
class_data_dir=class_data_dir,
output_dir="output_model",
instance_prompt="",
seed=42,
resolution=512,
mixed_precision="fp16",
train_batch_size=1,
gradient_accumulation_steps=1,
use_8bit_adam=True,
learning_rate=2e-6,
lr_scheduler="polynomial",
lr_warmup_steps = 0,
max_train_steps=Training_Steps,
)
run_training(args_general)
torch.cuda.empty_cache()
#convert("output_model", "model.ckpt")
#shutil.rmtree('instance_images')
shutil.make_archive("diffusers_model", 'zip', "output_model")
torch.cuda.empty_cache()
return [gr.update(visible=True, value=["diffusers_model.zip"]), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)]
def generate(prompt):
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(prompt).images[0]
return(image)
def push(model_name, where_to_upload, hf_token):
if(not os.path.exists("model.ckpt")):
convert("output_model", "model.ckpt")
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
from huggingface_hub import create_repo
model_name_slug = slugify(model_name)
if(where_to_upload == "My personal profile"):
api = HfApi()
your_username = api.whoami(token=hf_token)["name"]
model_id = f"{your_username}/{model_name_slug}"
else:
model_id = f"sd-dreambooth-library/{model_name_slug}"
headers = {"Authorization" : f"Bearer: {hf_token}", "Content-Type": "application/json"}
response = requests.post("https://example.com/get-my-account-detail", headers=headers)
images_upload = os.listdir("instance_images")
image_string = ""
instance_prompt_list = []
previous_instance_prompt = ''
for i, image in enumerate(images_upload):
instance_prompt = image.split("_")[0]
if(instance_prompt != previous_instance_prompt):
title_instance_prompt_string = instance_prompt
instance_prompt_list.append(instance_prompt)
else:
title_instance_prompt_string = ''
previous_instance_prompt = instance_prompt
image_string = f'''
{title_instance_prompt_string}
{image_string}![{instance_prompt} {i}](https://huggingface.co./{model_name_slug}/resolve/main/sample_images/{image})
'''
readme_text = f'''---
license: creativeml-openrail-m
tags:
- text-to-image
---
### {model_name} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [Hugging Face Dreambooth Training Space](https://huggingface.co./spaces/multimodalart/dreambooth-training)
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Sample pictures of this concept:
{image_string}
'''
#Save the readme to a file
readme_file = open("README.md", "w")
readme_file.write(readme_text)
readme_file.close()
#Save the token identifier to a file
text_file = open("token_identifier.txt", "w")
text_file.write(', '.join(instance_prompt_list))
text_file.close()
operations = [
CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"),
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"),
CommitOperationAdd(path_in_repo=f"model.ckpt",path_or_fileobj="model.ckpt")
]
api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=f"Upload the model {model_name}",
token=hf_token
)
api.upload_folder(
folder_path="output_model",
repo_id=model_id,
token=hf_token
)
api.upload_folder(
folder_path="instance_images",
path_in_repo="concept_images",
repo_id=model_id,
token=hf_token
)
return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co./{model_id})"), gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])]
def convert_to_ckpt():
convert("output_model", "model.ckpt")
return gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])
with gr.Blocks(css=css) as demo:
with gr.Box():
if "IS_SHARED_UI" in os.environ:
gr.HTML('''
<div class="gr-prose" style="max-width: 80%">
<h2>Attention - This Space doesn't work in this shared UI</h2>
<p>For it to work, you have to duplicate the Space and run it on your own profile where a (paid) private GPU will be attributed to it during runtime. As each T4 costs US$0,60/h, it should cost you < US$1 to train a model with less than 100 images on default settings! 🤑</p>
<img class="instruction" src="file/duplicate.png">
<img class="arrow" src="file/arrow.png" />
</div>
''')
else:
gr.HTML('''
<div class="gr-prose" style="max-width: 80%">
<h2>You have successfully cloned the Dreambooth Training Space</h2>
<p>If you haven't already, attribute a T4 GPU to it (via the Settings tab) and run the training below. You will be billed by the minute from when you activate the GPU until when you turn it off.</p>
</div>
''')
gr.Markdown("# Dreambooth training")
gr.Markdown("Customize Stable Diffusion by giving it with few-shot examples")
with gr.Row():
type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True)
with gr.Row():
with gr.Column():
thing_description = gr.Markdown("You are going to train an `object`, upload 5-10 images of the object you are planning on training on from different angles/perspectives. You must have the right to do so and you are liable for the images you use, example:")
thing_image_example = gr.HTML('''<img src="file/cat-toy.png" />''')
things_naming = gr.Markdown("You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `cttoy` here). Images will be automatically cropped to 512x512.")
with gr.Column():
file_collection = []
concept_collection = []
buttons_collection = []
delete_collection = []
is_visible = []
row = [None] * maximum_concepts
for x in range(maximum_concepts):
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
if(x == 0):
visible = True
is_visible.append(gr.State(value=True))
else:
visible = False
is_visible.append(gr.State(value=False))
file_collection.append(gr.File(label=f"Upload the images for your {ordinal(x+1)} concept", file_count="multiple", interactive=True, visible=visible))
with gr.Column(visible=visible) as row[x]:
concept_collection.append(gr.Textbox(label=f"{ordinal(x+1)} concept prompt - use a unique, made up word to avoid collisions"))
with gr.Row():
if(x < maximum_concepts-1):
buttons_collection.append(gr.Button(value="Add +1 concept", visible=visible))
if(x > 0):
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
counter_add = 1
for button in buttons_collection:
if(counter_add < len(buttons_collection)):
button.click(lambda:
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
None,
[row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], file_collection[counter_add]], queue=False)
else:
button.click(lambda:[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True], None, [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
counter_add += 1
counter_delete = 1
for delete_button in delete_collection:
if(counter_delete < len(delete_collection)+1):
delete_button.click(lambda:[gr.update(visible=False),gr.update(visible=False), gr.update(visible=True), False], None, [file_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]]), queue=False
counter_delete += 1
with gr.Accordion("Custom Settings", open=False):
swap_auto_calculated = gr.Checkbox(label="Use custom settings")
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style` as follows: The number of steps is calculated by number of images uploaded multiplied by 20. The text-encoder is frozen after 10% of the steps for a style, 30% of the steps for an object and is fully trained for persons.")
steps = gr.Number(label="How many steps", value=800)
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder], queue=False)
training_summary = gr.Textbox("", visible=False, label="Training Summary")
steps.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary], queue=False)
perc_txt_encoder.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary], queue=False)
for file in file_collection:
file.change(fn=count_files, inputs=file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[training_summary], queue=False)
train_btn = gr.Button("Start Training")
with gr.Box(visible=False) as try_your_model:
gr.Markdown("## Try your model")
with gr.Row():
prompt = gr.Textbox(label="Type your prompt")
result_image = gr.Image()
generate_button = gr.Button("Generate Image")
with gr.Box(visible=False) as push_to_hub:
gr.Markdown("## Push to Hugging Face Hub")
model_name = gr.Textbox(label="Name of your model", placeholder="Tarsila do Amaral Style")
where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to")
gr.Markdown("[A Hugging Face write access token](https://huggingface.co./settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.")
hf_token = gr.Textbox(label="Hugging Face Write Token")
push_button = gr.Button("Push to the Hub")
result = gr.File(label="Download the uploaded models in the diffusers format", visible=True)
success_message_upload = gr.Markdown(visible=False)
convert_button = gr.Button("Convert to CKPT", visible=False)
train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[result, try_your_model, push_to_hub, convert_button])
generate_button.click(fn=generate, inputs=prompt, outputs=result_image)
push_button.click(fn=push, inputs=[model_name, where_to_upload, hf_token], outputs=[success_message_upload, result])
convert_button.click(fn=convert_to_ckpt, inputs=[], outputs=result)
demo.launch() |