Spaces:
Runtime error
Runtime error
File size: 5,465 Bytes
405b0bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
"""Interface for labeling concepts in images.
"""
from typing import Optional
import gradio as gr
from src import global_variables
from src.constants import CONCEPTS, ASSETS_FOLDER, DATASET_NAME
def get_image(
step: int,
split: str,
index: str,
filtered_indices: dict,
profile: gr.OAuthProfile
):
username = profile.username
try:
int_index = int(index)
except:
gr.Warning("Error parsing index using 0")
int_index = 0
sample_idx = int_index + step
if sample_idx < 0:
gr.Warning("No previous image.")
sample_idx = 0
if sample_idx >= len(global_variables.all_metadata[split]):
gr.Warning("No next image.")
sample_idx = len(global_variables.all_metadata[split]) - 1
sample = global_variables.all_metadata[split][sample_idx]
image_path = f"{ASSETS_FOLDER}/{DATASET_NAME}/data/{split}/{sample['file_name']}"
try:
username_votes = sample["votes"][username]
voted_concepts = [c for c in CONCEPTS if username_votes.get(c, False)]
except KeyError:
voted_concepts = []
return (
image_path,
voted_concepts,
f"{split}:{sample_idx}",
sample["class"],
sample["concepts"],
str(sample_idx),
filtered_indices,
)
def make_get_image(step):
def f(
split: str,
index: str,
filtered_indices: dict,
profile: gr.OAuthProfile
):
return get_image(step, split, index, filtered_indices, profile)
return f
get_next_image = make_get_image(1)
get_prev_image = make_get_image(-1)
get_current_image = make_get_image(0)
def submit_label(
voted_concepts: list,
current_image: Optional[str],
split,
index,
filtered_indices,
profile: gr.OAuthProfile
):
username = profile.username
if current_image is None:
gr.Warning("No image selected.")
return None, None, None, None, None, index, filtered_indices
current_split, idx = current_image.split(":")
idx = int(idx)
global_variables.get_metadata(current_split)
if "votes" not in global_variables.all_metadata[current_split][idx]:
global_variables.all_metadata[current_split][idx]["votes"] = {}
global_variables.all_metadata[current_split][idx]["votes"][username] = {c: c in voted_concepts for c in CONCEPTS}
vote_sum = {c: 0 for c in CONCEPTS}
concepts = {}
for c in CONCEPTS:
for vote in global_variables.all_metadata[current_split][idx]["votes"].values():
if c not in vote:
continue
vote_sum[c] += 2 * vote[c] - 1
concepts[c] = vote_sum[c] > 0 if vote_sum[c] != 0 else None
global_variables.all_metadata[current_split][idx]["concepts"] = concepts
global_variables.save_metadata(current_split)
gr.Info("Submit success")
return get_next_image(
split,
index,
filtered_indices,
profile
)
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(
"## # Image Selection",
)
split = gr.Radio(
label="Split",
choices=["train", "validation", "test"],
value="train",
)
index = gr.Textbox(
value="0",
label="Index",
max_lines=1,
)
with gr.Group():
voted_concepts = gr.CheckboxGroup(
label="Voted Concepts",
choices=CONCEPTS,
)
with gr.Row():
prev_button = gr.Button(
value="Prev",
)
next_button = gr.Button(
value="Next",
)
gr.LoginButton()
submit_button = gr.Button(
value="Submit",
)
with gr.Group():
gr.Markdown(
"## # Image Info",
)
im_class = gr.Textbox(
label="Class",
)
im_concepts = gr.JSON(
label="Concepts",
)
with gr.Column():
image = gr.Image(
label="Image",
)
current_image = gr.State(None)
filtered_indices = gr.State({
split: list(range(len(global_variables.all_metadata[split])))
for split in global_variables.all_metadata
})
common_output = [
image,
voted_concepts,
current_image,
im_class,
im_concepts,
index,
filtered_indices,
]
common_input = [split, index, filtered_indices]
prev_button.click(
get_prev_image,
inputs=common_input,
outputs=common_output
)
next_button.click(
get_next_image,
inputs=common_input,
outputs=common_output
)
submit_button.click(
submit_label,
inputs=[voted_concepts, current_image, split, index, filtered_indices],
outputs=common_output
)
index.submit(
get_current_image,
inputs=common_input,
outputs=common_output,
)
interface.load(
get_current_image,
inputs=common_input,
outputs=common_output,
)
|