|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os.path as osp |
|
|
|
import kornia |
|
import numpy as np |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from termcolor import colored |
|
|
|
|
|
class NormalDataset: |
|
def __init__(self, cfg, split="train"): |
|
|
|
self.split = split |
|
self.root = cfg.root |
|
self.bsize = cfg.batch_size |
|
|
|
self.opt = cfg.dataset |
|
self.datasets = self.opt.types |
|
self.input_size = self.opt.input_size |
|
self.scales = self.opt.scales |
|
|
|
|
|
self.in_nml = [item[0] for item in cfg.net.in_nml] |
|
self.in_nml_dim = [item[1] for item in cfg.net.in_nml] |
|
self.in_total = self.in_nml + ["normal_F", "normal_B"] |
|
self.in_total_dim = self.in_nml_dim + [3, 3] |
|
|
|
if self.split != "train": |
|
self.rotations = range(0, 360, 120) |
|
else: |
|
self.rotations = np.arange(0, 360, 360 // self.opt.rotation_num).astype(np.int) |
|
|
|
self.datasets_dict = {} |
|
|
|
for dataset_id, dataset in enumerate(self.datasets): |
|
|
|
dataset_dir = osp.join(self.root, dataset) |
|
|
|
self.datasets_dict[dataset] = { |
|
"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str), |
|
"scale": self.scales[dataset_id], |
|
} |
|
|
|
self.subject_list = self.get_subject_list(split) |
|
|
|
|
|
self.image_to_tensor = transforms.Compose([ |
|
transforms.Resize(self.input_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
]) |
|
|
|
|
|
self.mask_to_tensor = transforms.Compose([ |
|
transforms.Resize(self.input_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.0, ), (1.0, )), |
|
]) |
|
|
|
def get_subject_list(self, split): |
|
|
|
subject_list = [] |
|
|
|
for dataset in self.datasets: |
|
|
|
split_txt = osp.join(self.root, dataset, f"{split}.txt") |
|
|
|
if osp.exists(split_txt) and osp.getsize(split_txt) > 0: |
|
print(f"load from {split_txt}") |
|
subject_list += np.loadtxt(split_txt, dtype=str).tolist() |
|
|
|
if self.split != "test": |
|
subject_list += subject_list[:self.bsize - len(subject_list) % self.bsize] |
|
print(colored(f"total: {len(subject_list)}", "yellow")) |
|
|
|
bug_list = sorted(np.loadtxt(osp.join(self.root, 'bug.txt'), dtype=str).tolist()) |
|
|
|
subject_list = [subject for subject in subject_list if (subject not in bug_list)] |
|
|
|
|
|
return subject_list |
|
|
|
def __len__(self): |
|
return len(self.subject_list) * len(self.rotations) |
|
|
|
def __getitem__(self, index): |
|
|
|
rid = index % len(self.rotations) |
|
mid = index // len(self.rotations) |
|
|
|
rotation = self.rotations[rid] |
|
subject = self.subject_list[mid].split("/")[1] |
|
dataset = self.subject_list[mid].split("/")[0] |
|
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject]) |
|
|
|
if not osp.exists(osp.join(self.root, render_folder)): |
|
render_folder = "/".join([dataset + f"_36views", subject]) |
|
|
|
|
|
data_dict = { |
|
"dataset": dataset, |
|
"subject": subject, |
|
"rotation": rotation, |
|
"scale": self.datasets_dict[dataset]["scale"], |
|
"image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"), |
|
} |
|
|
|
|
|
for name, channel in zip(self.in_total, self.in_total_dim): |
|
|
|
if f"{name}_path" not in data_dict.keys(): |
|
data_dict.update({ |
|
f"{name}_path": |
|
osp.join(self.root, render_folder, name, f"{rotation:03d}.png") |
|
}) |
|
|
|
data_dict.update({ |
|
name: |
|
self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False, erasing=False) |
|
}) |
|
|
|
path_keys = [key for key in data_dict.keys() if "_path" in key or "_dir" in key] |
|
|
|
for key in path_keys: |
|
del data_dict[key] |
|
|
|
return data_dict |
|
|
|
def imagepath2tensor(self, path, channel=3, inv=False, erasing=False): |
|
|
|
rgba = Image.open(path).convert("RGBA") |
|
mask = rgba.split()[-1] |
|
|
|
image = rgba.convert("RGB") |
|
image = self.image_to_tensor(image) |
|
mask = self.mask_to_tensor(mask) |
|
|
|
|
|
if erasing: |
|
mask = kornia.augmentation.RandomErasing( |
|
p=0.2, scale=(0.01, 0.2), ratio=(0.3, 3.3), keepdim=True |
|
)(mask) |
|
image = (image * mask)[:channel] |
|
|
|
return (image * (0.5 - inv) * 2.0).float() |
|
|