mtyrrell commited on
Commit
60ede2d
·
verified ·
1 Parent(s): 8c3e391

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -1
app.py CHANGED
@@ -131,7 +131,7 @@ def process_data(uploaded_file):
131
  steps_remaining = total_steps - step_count
132
  if step_count > 1:
133
  estimated_time_remaining = (elapsed_time / step_count) * steps_remaining
134
- estimated_time_remaining_text.write(f'Estimated Time Remaining: {estimated_time_remaining:.0f} seconds (step {step_count+1} of 8)')
135
  else:
136
  estimated_time_remaining_text.write('Calculating time remaining...')
137
 
@@ -151,6 +151,19 @@ def process_data(uploaded_file):
151
 
152
  # Streamlit app
153
  st.title('MAF Application Pre-Filtering Tool')
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  uploaded_file = st.file_uploader("Choose a file")
155
 
156
 
 
131
  steps_remaining = total_steps - step_count
132
  if step_count > 1:
133
  estimated_time_remaining = (elapsed_time / step_count) * steps_remaining
134
+ estimated_time_remaining_text.write(f'Estimated Time Remaining: {estimated_time_remaining:.0f} seconds (step {step_count+1} of 9)')
135
  else:
136
  estimated_time_remaining_text.write('Calculating time remaining...')
137
 
 
151
 
152
  # Streamlit app
153
  st.title('MAF Application Pre-Filtering Tool')
154
+
155
+ with st.expander("ℹ️ - About this app", expanded=False):
156
+ st.write(
157
+ """
158
+ This tool provides an interface for running an automated preliminary assessment of applications to the MAF call for applications.
159
+
160
+ The tool functions by running selected text fields from the application through a series of 8 LLMs fine-tuned for text classification (ref. diagram below).
161
+ The resulting output classifications are used to compute a score and a suggested pre-filtering action. The tool has been tested against
162
+ human assessors with an extremely low false negative rate (<6%).
163
+
164
+ """)
165
+ st.image('pipeline.png')
166
+
167
  uploaded_file = st.file_uploader("Choose a file")
168
 
169