diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,14 +1,17 @@ -from functools import partial +from functools import partial, reduce import json import os +import re from datasets import load_dataset import gradio as gr -from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url +from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load import pandas as pd from tqdm.autonotebook import tqdm +from utils.model_size import get_model_parameters_memory + TASKS = [ "BitextMining", "Classification", @@ -21,7 +24,7 @@ TASKS = [ ] TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)'] -TASK_LIST_BITEXT_MINING_OTHER = ["BornholmBitextMining"] +TASK_LIST_BITEXT_MINING_DA = ["BornholmBitextMining"] TASK_LIST_CLASSIFICATION = [ "AmazonCounterfactualClassification (en)", @@ -817,98 +820,230 @@ EXTERNAL_MODEL_TO_SEQLEN = { } EXTERNAL_MODEL_TO_SIZE = { - "allenai-specter": 0.44, - "all-MiniLM-L12-v2": 0.13, - "all-MiniLM-L6-v2": 0.09, - "all-mpnet-base-v2": 0.44, - "bert-base-10lang-cased": 0.61, - "bert-base-15lang-cased": 0.61, - "bert-base-25lang-cased": 0.61, - "bert-base-multilingual-cased": 0.71, - "bert-base-multilingual-uncased": 0.67, - "bert-base-uncased": 0.44, - "bert-base-swedish-cased": 0.50, - "bge-base-zh-v1.5": 0.41, - "bge-large-en-v1.5": 1.30, - "bge-large-zh-v1.5": 1.30, - "bge-large-zh-noinstruct": 1.30, - "bge-small-zh-v1.5": 0.10, - "camembert-base": 0.45, - "camembert-large": 1.35, - "cross-en-de-roberta-sentence-transformer": 1.11, - "contriever-base-msmarco": 0.44, - "distilbert-base-25lang-cased": 0.44, - "distilbert-base-en-fr-cased": 0.44, - "distilbert-base-en-fr-es-pt-it-cased": 0.44, - "distilbert-base-fr-cased": 0.44, - "distilbert-base-uncased": 0.44, - "DanskBERT": 0.50, - "distiluse-base-multilingual-cased-v2": 0.54, - "dfm-encoder-large-v1": 1.42, - "dfm-sentence-encoder-large-1": 1.63, - "e5-base": 0.44, - "e5-large": 1.34, - "e5-mistral-7b-instruct": 14.22, - "e5-small": 0.13, - "electra-small-nordic": 0.09, - "electra-small-swedish-cased-discriminator": 0.06, - "flaubert_base_cased": 0.55, - "flaubert_base_uncased": 0.55, - "flaubert_large_cased": 1.49, - "gbert-base": 0.44, - "gbert-large": 1.35, - "gelectra-base": 0.44, - "gelectra-large": 1.34, - "glove.6B.300d": 0.48, - "google-gecko.text-embedding-preview-0409": 2.29, - "google-gecko-256.text-embedding-preview-0409": 2.29, - "gottbert-base": 0.51, - "gtr-t5-base": 0.22, - "gtr-t5-large": 0.67, - "gtr-t5-xl": 2.48, - "gtr-t5-xxl": 9.73, - "herbert-base-retrieval-v2": 0.50, - "komninos": 0.27, - "luotuo-bert-medium": 1.31, - "LASER2": 0.17, - "LaBSE": 1.88, - "m3e-base": 0.41, - "m3e-large": 0.41, - "msmarco-bert-co-condensor": 0.44, - "multi-qa-MiniLM-L6-cos-v1": 0.09, - "multilingual-e5-base": 1.11, - "multilingual-e5-small": 0.47, - "multilingual-e5-large": 2.24, - "nb-bert-base": 0.71, - "nb-bert-large": 1.42, - "nomic-embed-text-v1.5-64": 0.55, - "nomic-embed-text-v1.5-128": 0.55, - "nomic-embed-text-v1.5-256": 0.55, - "nomic-embed-text-v1.5-512": 0.55, - "norbert3-base": 0.52, - "norbert3-large": 1.47, - "paraphrase-multilingual-mpnet-base-v2": 1.11, - "paraphrase-multilingual-MiniLM-L12-v2": 0.47, - "sentence-camembert-base": 0.44, - "sentence-camembert-large": 1.35, - "sentence-croissant-llm-base": 5.12, - "sentence-bert-swedish-cased": 0.50, - "sentence-t5-base": 0.22, - "sentence-t5-large": 0.67, - "sentence-t5-xl": 2.48, - "sentence-t5-xxl": 9.73, - "silver-retriever-base-v1": 0.50, - "sup-simcse-bert-base-uncased": 0.44, - "st-polish-paraphrase-from-distilroberta": 0.50, - "st-polish-paraphrase-from-mpnet": 0.50, - "text2vec-base-chinese": 0.41, - "text2vec-large-chinese": 1.30, - "unsup-simcse-bert-base-uncased": 0.44, - "use-cmlm-multilingual": 1.89, - "voyage-law-2": 2.45, - "voyage-lite-02-instruct": 2.45, - "xlm-roberta-base": 1.12, - "xlm-roberta-large": 2.24, + "allenai-specter": 110, + "all-MiniLM-L12-v2": 33, + "all-MiniLM-L6-v2": 23, + "all-mpnet-base-v2": 110, + "bert-base-10lang-cased": 138, + "bert-base-15lang-cased": 138, + "bert-base-25lang-cased": 138, + "bert-base-multilingual-cased": 179, + "bert-base-multilingual-uncased": 168, + "bert-base-uncased": 110, + "bert-base-swedish-cased": 125, + "bge-base-zh-v1.5": 102, + "bge-large-zh-v1.5": 326, + "bge-large-zh-noinstruct": 326, + "bge-small-zh-v1.5": 24, + "camembert-base": 111, + "camembert-large": 338, + "cross-en-de-roberta-sentence-transformer": 278, + "contriever-base-msmarco": 110, + "distilbert-base-25lang-cased": 110, + "distilbert-base-en-fr-cased": 110, + "distilbert-base-en-fr-es-pt-it-cased": 110, + "distilbert-base-fr-cased": 110, + "distilbert-base-uncased": 110, + "DanskBERT": 125, + "distiluse-base-multilingual-cased-v2": 135, + "dfm-encoder-large-v1": 355, + "dfm-sentence-encoder-large-1": 355, + "e5-base": 110, + "e5-large": 335, + "e5-mistral-7b-instruct": 7111, + "e5-small": 33, + "electra-small-nordic": 23, + "electra-small-swedish-cased-discriminator": 16, + "flaubert_base_cased": 138, + "flaubert_base_uncased": 138, + "flaubert_large_cased": 372, + "gbert-base": 110, + "gbert-large": 337, + "gelectra-base": 110, + "gelectra-large": 335, + "glove.6B.300d": 120, + "google-gecko.text-embedding-preview-0409": 1200, + "google-gecko-256.text-embedding-preview-0409": 1200, + "gottbert-base": 127, + "gtr-t5-base": 110, + "gtr-t5-large": 168, + "gtr-t5-xl": 1240, + "gtr-t5-xxl": 4865, + "herbert-base-retrieval-v2": 125, + "komninos": 134, + "luotuo-bert-medium": 328, + "LASER2": 43, + "LaBSE": 471, + "m3e-base": 102, + "m3e-large": 102, + "msmarco-bert-co-condensor": 110, + "multi-qa-MiniLM-L6-cos-v1": 23, + "multilingual-e5-base": 278, + "multilingual-e5-small": 118, + "multilingual-e5-large": 560, + "nb-bert-base": 179, + "nb-bert-large": 355, + "nomic-embed-text-v1.5-64": 138, + "nomic-embed-text-v1.5-128": 138, + "nomic-embed-text-v1.5-256": 138, + "nomic-embed-text-v1.5-512": 138, + "norbert3-base": 131, + "norbert3-large": 368, + "paraphrase-multilingual-mpnet-base-v2": 278, + "paraphrase-multilingual-MiniLM-L12-v2": 118, + "sentence-camembert-base": 110, + "sentence-camembert-large": 337, + "sentence-croissant-llm-base": 1280, + "sentence-bert-swedish-cased": 125, + "sentence-t5-base": 110, + "sentence-t5-large": 168, + "sentence-t5-xl": 1240, + "sentence-t5-xxl": 4865, + "silver-retriever-base-v1": 125, + "sup-simcse-bert-base-uncased": 110, + "st-polish-paraphrase-from-distilroberta": 125, + "st-polish-paraphrase-from-mpnet": 125, + "text2vec-base-chinese": 102, + "text2vec-large-chinese": 326, + "unsup-simcse-bert-base-uncased": 110, + "use-cmlm-multilingual": 472, + "voyage-law-2": 1220, + "voyage-lite-02-instruct": 1220, + "xlm-roberta-base": 279, + "xlm-roberta-large": 560, +} + +PROPRIETARY_MODELS = { + "Cohere-embed-english-v3.0", + "Cohere-embed-multilingual-v3.0", + "Cohere-embed-multilingual-light-v3.0", + "Baichuan-text-embedding", + "mistral-embed", + "OpenSearch-text-hybrid", + "text-embedding-3-small", + "text-embedding-3-large", + "text-embedding-3-large-256", + "text-embedding-ada-002", + "text-similarity-ada-001", + "text-similarity-babbage-001", + "text-similarity-curie-001", + "text-similarity-davinci-001", + "text-search-ada-doc-001", + "text-search-ada-query-001", + "text-search-ada-001", + "text-search-curie-001", + "text-search-babbage-001", + "text-search-davinci-001", + "titan-embed-text-v1", + "voyage-2", + "voyage-code-2", + "voyage-law-2", + "voyage-lite-01-instruct", + "voyage-lite-02-instruct", + "google-gecko.text-embedding-preview-0409", + "google-gecko-256.text-embedding-preview-0409", +} +PROPRIETARY_MODELS = { + make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co./spaces/mteb/leaderboard")) + for model in PROPRIETARY_MODELS +} + +SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = { + "allenai-specter", + "allenai-specter", + "all-MiniLM-L12-v2", + "all-MiniLM-L6-v2", + "all-mpnet-base-v2", + "bert-base-10lang-cased", + "bert-base-15lang-cased", + "bert-base-25lang-cased", + "bert-base-multilingual-cased", + "bert-base-multilingual-uncased", + "bert-base-swedish-cased", + "bert-base-uncased", + "bge-base-zh-v1.5", + "bge-large-zh-v1.5", + "bge-large-zh-noinstruct", + "bge-small-zh-v1.5", + "camembert-base", + "camembert-large", + "contriever-base-msmarco", + "cross-en-de-roberta-sentence-transformer", + "DanskBERT", + "distilbert-base-25lang-cased", + "distilbert-base-en-fr-cased", + "distilbert-base-en-fr-es-pt-it-cased", + "distilbert-base-fr-cased", + "distilbert-base-uncased", + "distiluse-base-multilingual-cased-v2", + "dfm-encoder-large-v1", + "dfm-sentence-encoder-large-1", + "e5-base", + "e5-large", + "e5-mistral-7b-instruct", + "e5-small", + "electra-small-nordic", + "electra-small-swedish-cased-discriminator", + "flaubert_base_cased", + "flaubert_base_uncased", + "flaubert_large_cased", + "gbert-base", + "gbert-large", + "gelectra-base", + "gelectra-large", + "glove.6B.300d", + "gottbert-base", + "gtr-t5-base", + "gtr-t5-large", + "gtr-t5-xl", + "gtr-t5-xxl", + "herbert-base-retrieval-v2", + "komninos", + "luotuo-bert-medium", + "LaBSE", + "m3e-base", + "m3e-large", + "msmarco-bert-co-condensor", + "multi-qa-MiniLM-L6-cos-v1", + "multilingual-e5-base", + "multilingual-e5-large", + "multilingual-e5-small", + "nb-bert-base", + "nb-bert-large", + "nomic-embed-text-v1.5-64", + "nomic-embed-text-v1.5-128", + "nomic-embed-text-v1.5-256", + "nomic-embed-text-v1.5-512", + "norbert3-base", + "norbert3-large", + "paraphrase-multilingual-mpnet-base-v2", + "paraphrase-multilingual-MiniLM-L12-v2", + "sentence-camembert-base", + "sentence-camembert-large", + "sentence-croissant-llm-base", + "sentence-bert-swedish-cased", + "sentence-t5-base", + "sentence-t5-large", + "sentence-t5-xl", + "sentence-t5-xxl", + "silver-retriever-base-v1", + "sup-simcse-bert-base-uncased", + "st-polish-paraphrase-from-distilroberta", + "st-polish-paraphrase-from-mpnet", + "text2vec-base-chinese", + "text2vec-large-chinese", + "udever-bloom-1b1", + "udever-bloom-560m", + "universal-sentence-encoder-multilingual-3", + "universal-sentence-encoder-multilingual-large-3", + "unsup-simcse-bert-base-uncased", + "use-cmlm-multilingual", + "xlm-roberta-base", + "xlm-roberta-large", +} +SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = { + make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co./spaces/mteb/leaderboard")) + for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS } MODELS_TO_SKIP = { @@ -1035,6 +1170,7 @@ MODELS_TO_SKIP = { "Koat/gte-tiny", } + def add_lang(examples): if not(examples["eval_language"]): examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] @@ -1060,7 +1196,7 @@ def add_task(examples): examples["mteb_task"] = "STS" elif examples["mteb_dataset_name"] in norm(TASK_LIST_SUMMARIZATION + TASK_LIST_SUMMARIZATION_FR): examples["mteb_task"] = "Summarization" - elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER): + elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_DA): examples["mteb_task"] = "BitextMining" else: print("WARNING: Task not found for dataset", examples["mteb_dataset_name"]) @@ -1101,51 +1237,25 @@ with open("EXTERNAL_MODEL_RESULTS.json", "w") as f: def get_dim_seq_size(model): filenames = [sib.rfilename for sib in model.siblings] - dim, seq, size = "", "", "" - if "1_Pooling/config.json" in filenames: - st_config_path = hf_hub_download(model.modelId, filename="1_Pooling/config.json") - dim = json.load(open(st_config_path)).get("word_embedding_dimension", "") - elif "2_Pooling/config.json" in filenames: - st_config_path = hf_hub_download(model.modelId, filename="2_Pooling/config.json") - dim = json.load(open(st_config_path)).get("word_embedding_dimension", "") + dim, seq = "", "" + for filename in filenames: + if re.match("\d+_Pooling/config.json", filename): + st_config_path = hf_hub_download(model.modelId, filename=filename) + dim = json.load(open(st_config_path)).get("word_embedding_dimension", "") + break + for filename in filenames: + if re.match("\d+_Dense/config.json", filename): + st_config_path = hf_hub_download(model.modelId, filename=filename) + dim = json.load(open(st_config_path)).get("out_features", dim) if "config.json" in filenames: config_path = hf_hub_download(model.modelId, filename="config.json") config = json.load(open(config_path)) if not dim: dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", ""))) seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", "")))) - # Get model file size without downloading - if "pytorch_model.bin" in filenames: - url = hf_hub_url(model.modelId, filename="pytorch_model.bin") - meta = get_hf_file_metadata(url) - size = round(meta.size / 1e9, 2) - elif "pytorch_model.bin.index.json" in filenames: - index_path = hf_hub_download(model.modelId, filename="pytorch_model.bin.index.json") - """ - { - "metadata": { - "total_size": 28272820224 - },.... - """ - size = json.load(open(index_path)) - if ("metadata" in size) and ("total_size" in size["metadata"]): - size = round(size["metadata"]["total_size"] / 1e9, 2) - elif "model.safetensors" in filenames: - url = hf_hub_url(model.modelId, filename="model.safetensors") - meta = get_hf_file_metadata(url) - size = round(meta.size / 1e9, 2) - elif "model.safetensors.index.json" in filenames: - index_path = hf_hub_download(model.modelId, filename="model.safetensors.index.json") - """ - { - "metadata": { - "total_size": 14483464192 - },.... - """ - size = json.load(open(index_path)) - if ("metadata" in size) and ("total_size" in size["metadata"]): - size = round(size["metadata"]["total_size"] / 1e9, 2) - return dim, seq, size + # Get model file size without downloading. Parameters in million parameters and memory in GB + parameters, memory = get_model_parameters_memory(model) + return dim, seq, parameters, memory def make_datasets_clickable(df): """Does not work""" @@ -1156,11 +1266,11 @@ def make_datasets_clickable(df): return df def add_rank(df): - cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens"]] + cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]] if len(cols_to_rank) == 1: df.sort_values(cols_to_rank[0], ascending=False, inplace=True) else: - df.insert(1, "Average", df[cols_to_rank].mean(axis=1, skipna=False)) + df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False)) df.sort_values("Average", ascending=False, inplace=True) df.insert(0, "Rank", list(range(1, len(df) + 1))) df = df.round(2) @@ -1168,7 +1278,7 @@ def add_rank(df): df.fillna("", inplace=True) return df -def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=False, task_to_metric=TASK_TO_METRIC, rank=True): +def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True): api = HfApi() models = api.list_models(filter="mteb") # Initialize list to models that we cannot fetch metadata from @@ -1186,7 +1296,8 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_ # Model & at least one result if len(res) > 1: if add_emb_dim: - res["Model Size (GB)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "") + res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "") + res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else "" res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "") res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "") df_list.append(res) @@ -1227,10 +1338,12 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_ if add_emb_dim: try: # Fails on gated repos, so we only include scores for them - out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (GB)"] = get_dim_seq_size(model) + out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = get_dim_seq_size(model) except: pass df_list.append(out) + if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}: + SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"]) df = pd.DataFrame(df_list) # If there are any models that are the same, merge them # E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one @@ -1279,32 +1392,32 @@ def get_mteb_average(): DATA_OVERALL = DATA_OVERALL.round(2) - DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]) + DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION]) # Only keep rows with at least one score in addition to the "Model" & rank column - DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 4:].ne("").any(axis=1)] - DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]) - DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING]) + DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 4:].ne("").any(axis=1)] - DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]) - DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 2:].ne("").any(axis=1)] + DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION]) + DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 4:].ne("").any(axis=1)] - DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING]) - DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 2:].ne("").any(axis=1)] + DATA_RERANKING = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RERANKING]) + DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 4:].ne("").any(axis=1)] - DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL]) - DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 2:].ne("").any(axis=1)] + DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL]) + DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 4:].ne("").any(axis=1)] - DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS]) - DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 2:].ne("").any(axis=1)] + DATA_STS_EN = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS]) + DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 4:].ne("").any(axis=1)] - DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION]) + DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_SUMMARIZATION]) DATA_SUMMARIZATION = DATA_SUMMARIZATION[DATA_SUMMARIZATION.iloc[:, 1:].ne("").any(axis=1)] # Fill NaN after averaging DATA_OVERALL.fillna("", inplace=True) - DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]] + DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]] DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)] return DATA_OVERALL @@ -1341,29 +1454,29 @@ def get_mteb_average_zh(): DATA_OVERALL_ZH = DATA_OVERALL_ZH.round(2) - DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLASSIFICATION_ZH]) + DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION_ZH]) # Only keep rows with at least one score in addition to the "Model" & rank column - DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 4:].ne("").any(axis=1)] - DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLUSTERING_ZH]) - DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING_ZH]) + DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 4:].ne("").any(axis=1)] - DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_ZH]) - DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)] + DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION_ZH]) + DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 4:].ne("").any(axis=1)] - DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RERANKING_ZH]) - DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 2:].ne("").any(axis=1)] + DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RERANKING_ZH]) + DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 4:].ne("").any(axis=1)] - DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RETRIEVAL_ZH]) - DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 2:].ne("").any(axis=1)] + DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL_ZH]) + DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 4:].ne("").any(axis=1)] - DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_STS_ZH]) - DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 2:].ne("").any(axis=1)] + DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS_ZH]) + DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 4:].ne("").any(axis=1)] # Fill NaN after averaging DATA_OVERALL_ZH.fillna("", inplace=True) - DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]] + DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]] DATA_OVERALL_ZH = DATA_OVERALL_ZH[DATA_OVERALL_ZH.iloc[:, 5:].ne("").any(axis=1)] return DATA_OVERALL_ZH @@ -1401,31 +1514,31 @@ def get_mteb_average_fr(): DATA_OVERALL_FR.insert(0, "Rank", list(range(1, len(DATA_OVERALL_FR) + 1))) DATA_OVERALL_FR = DATA_OVERALL_FR.round(2) - DATA_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_CLASSIFICATION_FR]) - DATA_CLASSIFICATION_FR = DATA_CLASSIFICATION_FR[DATA_CLASSIFICATION_FR.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION_FR]) + DATA_CLASSIFICATION_FR = DATA_CLASSIFICATION_FR[DATA_CLASSIFICATION_FR.iloc[:, 4:].ne("").any(axis=1)] - DATA_CLUSTERING_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_CLUSTERING_FR]) - DATA_CLUSTERING_FR = DATA_CLUSTERING_FR[DATA_CLUSTERING_FR.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLUSTERING_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING_FR]) + DATA_CLUSTERING_FR = DATA_CLUSTERING_FR[DATA_CLUSTERING_FR.iloc[:, 4:].ne("").any(axis=1)] - DATA_PAIR_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_FR]) - DATA_PAIR_CLASSIFICATION_FR = DATA_PAIR_CLASSIFICATION_FR[DATA_PAIR_CLASSIFICATION_FR.iloc[:, 2:].ne("").any(axis=1)] + DATA_PAIR_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION_FR]) + DATA_PAIR_CLASSIFICATION_FR = DATA_PAIR_CLASSIFICATION_FR[DATA_PAIR_CLASSIFICATION_FR.iloc[:, 4:].ne("").any(axis=1)] - DATA_RERANKING_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_RERANKING_FR]) - DATA_RERANKING_FR = DATA_RERANKING_FR[DATA_RERANKING_FR.iloc[:, 2:].ne("").any(axis=1)] + DATA_RERANKING_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RERANKING_FR]) + DATA_RERANKING_FR = DATA_RERANKING_FR[DATA_RERANKING_FR.iloc[:, 4:].ne("").any(axis=1)] - DATA_RETRIEVAL_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_RETRIEVAL_FR]) - DATA_RETRIEVAL_FR = DATA_RETRIEVAL_FR[DATA_RETRIEVAL_FR.iloc[:, 2:].ne("").any(axis=1)] + DATA_RETRIEVAL_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL_FR]) + DATA_RETRIEVAL_FR = DATA_RETRIEVAL_FR[DATA_RETRIEVAL_FR.iloc[:, 4:].ne("").any(axis=1)] - DATA_STS_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_STS_FR]) - DATA_STS_FR = DATA_STS_FR[DATA_STS_FR.iloc[:, 2:].ne("").any(axis=1)] + DATA_STS_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS_FR]) + DATA_STS_FR = DATA_STS_FR[DATA_STS_FR.iloc[:, 4:].ne("").any(axis=1)] - DATA_SUMMARIZATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_SUMMARIZATION_FR]) + DATA_SUMMARIZATION_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_SUMMARIZATION_FR]) DATA_SUMMARIZATION_FR = DATA_SUMMARIZATION_FR[DATA_SUMMARIZATION_FR.iloc[:, 1:].ne("").any(axis=1)] # Fill NaN after averaging DATA_OVERALL_FR.fillna("", inplace=True) - DATA_OVERALL_FR = DATA_OVERALL_FR[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_FR)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_FR)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_FR)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_FR)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_FR)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_FR)} datasets)", f"STS Average ({len(TASK_LIST_STS_FR)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION_FR)} dataset)"]] + DATA_OVERALL_FR = DATA_OVERALL_FR[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_FR)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_FR)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_FR)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_FR)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_FR)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_FR)} datasets)", f"STS Average ({len(TASK_LIST_STS_FR)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION_FR)} dataset)"]] DATA_OVERALL_FR = DATA_OVERALL_FR[DATA_OVERALL_FR.iloc[:, 5:].ne("").any(axis=1)] return DATA_OVERALL_FR @@ -1460,26 +1573,26 @@ def get_mteb_average_pl(): DATA_OVERALL_PL = DATA_OVERALL_PL.round(2) - DATA_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLASSIFICATION_PL]) + DATA_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION_PL]) # Only keep rows with at least one score in addition to the "Model" & rank column - DATA_CLASSIFICATION_PL = DATA_CLASSIFICATION_PL[DATA_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLASSIFICATION_PL = DATA_CLASSIFICATION_PL[DATA_CLASSIFICATION_PL.iloc[:, 4:].ne("").any(axis=1)] - DATA_CLUSTERING_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLUSTERING_PL]) - DATA_CLUSTERING_PL = DATA_CLUSTERING_PL[DATA_CLUSTERING_PL.iloc[:, 2:].ne("").any(axis=1)] + DATA_CLUSTERING_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING_PL]) + DATA_CLUSTERING_PL = DATA_CLUSTERING_PL[DATA_CLUSTERING_PL.iloc[:, 4:].ne("").any(axis=1)] - DATA_PAIR_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_PL]) - DATA_PAIR_CLASSIFICATION_PL = DATA_PAIR_CLASSIFICATION_PL[DATA_PAIR_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)] + DATA_PAIR_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION_PL]) + DATA_PAIR_CLASSIFICATION_PL = DATA_PAIR_CLASSIFICATION_PL[DATA_PAIR_CLASSIFICATION_PL.iloc[:, 4:].ne("").any(axis=1)] - DATA_RETRIEVAL_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_RETRIEVAL_PL]) - DATA_RETRIEVAL_PL = DATA_RETRIEVAL_PL[DATA_RETRIEVAL_PL.iloc[:, 2:].ne("").any(axis=1)] + DATA_RETRIEVAL_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL_PL]) + DATA_RETRIEVAL_PL = DATA_RETRIEVAL_PL[DATA_RETRIEVAL_PL.iloc[:, 4:].ne("").any(axis=1)] - DATA_STS_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_STS_PL]) - DATA_STS_PL = DATA_STS_PL[DATA_STS_PL.iloc[:, 2:].ne("").any(axis=1)] + DATA_STS_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS_PL]) + DATA_STS_PL = DATA_STS_PL[DATA_STS_PL.iloc[:, 4:].ne("").any(axis=1)] # Fill NaN after averaging DATA_OVERALL_PL.fillna("", inplace=True) - DATA_OVERALL_PL = DATA_OVERALL_PL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_PL)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", f"STS Average ({len(TASK_LIST_STS_PL)} datasets)"]] + DATA_OVERALL_PL = DATA_OVERALL_PL[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_PL)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", f"STS Average ({len(TASK_LIST_STS_PL)} datasets)"]] DATA_OVERALL_PL = DATA_OVERALL_PL[DATA_OVERALL_PL.iloc[:, 5:].ne("").any(axis=1)] return DATA_OVERALL_PL @@ -1488,16 +1601,15 @@ get_mteb_average() get_mteb_average_fr() get_mteb_average_pl() get_mteb_average_zh() - -DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING) -DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER) -DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA) -DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB) -DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV) -DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER) -DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE) -DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER) -DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW) +DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_BITEXT_MINING] +DATA_BITEXT_MINING_DA = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_DA)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_BITEXT_MINING_DA] +DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_DA] +DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_NB] +DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_SV] +DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_OTHER] +DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLUSTERING_DE] +DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_STS_OTHER] +DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_RETRIEVAL_LAW] # Exact, add all non-nan integer values for every dataset NUM_SCORES = 0 @@ -1506,7 +1618,7 @@ MODELS = [] # LANGUAGES = [] for d in [ DATA_BITEXT_MINING, - DATA_BITEXT_MINING_OTHER, + DATA_BITEXT_MINING_DA, DATA_CLASSIFICATION_EN, DATA_CLASSIFICATION_DA, DATA_CLASSIFICATION_FR, @@ -1541,7 +1653,7 @@ for d in [ DATA_SUMMARIZATION_FR, ]: # NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum() - cols_to_ignore = 3 if "Average" in d.columns else 2 + cols_to_ignore = 4 if "Average" in d.columns else 3 # Count number of scores including only non-nan floats & excluding the rank column NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum() # Exclude rank & model name column (first two); Do not count different language versions as different datasets @@ -1556,6 +1668,7 @@ NUM_MODELS = len(set(MODELS)) # 1. Force headers to wrap # 2. Force model column (maximum) width # 3. Prevent model column from overflowing, scroll instead +# 4. Prevent checkbox groups from taking up too much space css = """ table > thead { white-space: normal @@ -1568,807 +1681,498 @@ table { table > tbody > tr > td:nth-child(2) > div { overflow-x: auto } + +.filter-checkbox-group { + max-width: max-content; +} """ -block = gr.Blocks(css=css) -with block: +""" +Each inner tab can have the following keys: +- language: The language of the leaderboard +- language_long: [optional] The long form of the language +- description: The description of the leaderboard +- credits: [optional] The credits for the leaderboard +- data: The data for the leaderboard +- refresh: The function to refresh the leaderboard +""" + +chinese_credits = "[FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)" +french_credits = "[Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)" +danish_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)" +norwegian_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)" +polish_credits = "[Rafaล‚ Poล›wiata](https://github.com/rafalposwiata)" + +data = { + "Overall": { + "metric": "Various, refer to task tabs", + "data": [ + { + "language": "English", + "description": "**Overall MTEB English leaderboard** ๐Ÿ”ฎ", + "data": DATA_OVERALL, + "refresh": get_mteb_average, + }, + { + "language": "Chinese", + "data": DATA_OVERALL_ZH, + "description": "**Overall MTEB Chinese leaderboard (C-MTEB)** ๐Ÿ”ฎ๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "refresh": get_mteb_average_zh, + }, + { + "language": "French", + "data": DATA_OVERALL_FR, + "description": "**Overall MTEB French leaderboard (F-MTEB)** ๐Ÿ”ฎ๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "refresh": get_mteb_average_fr, + }, + { + "language": "Polish", + "data": DATA_OVERALL_PL, + "description": "**Overall MTEB Polish leaderboard** ๐Ÿ”ฎ๐Ÿ‡ต๐Ÿ‡ฑ", + "refresh": get_mteb_average_pl, + }, + ] + }, + "Bitext Mining": { + "metric": "[F1](https://huggingface.co./spaces/evaluate-metric/f1)", + "data": [ + { + "language": "English-X", + "language_long": "117 (Pairs of: English & other language)", + "description": "**Bitext Mining English-X Leaderboard** ๐ŸŽŒ", + "data": DATA_BITEXT_MINING, + "refresh": partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING), + }, + { + "language": "Danish", + "language_long": "Danish & Bornholmsk (Danish Dialect)", + "description": "**Bitext Mining Danish Leaderboard** ๐ŸŽŒ๐Ÿ‡ฉ๐Ÿ‡ฐ", + "credits": danish_credits, + "data": DATA_BITEXT_MINING_DA, + "refresh": partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_DA), + } + ] + }, + "Classification": { + "metric": "[Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)", + "data": [ + { + "language": "English", + "description": "**Classification English Leaderboard** โค๏ธ", + "data": DATA_CLASSIFICATION_EN, + "refresh": partial(get_mteb_data, tasks=["Classification"], langs=["en"]) + }, + { + "language": "Chinese", + "description": "**Classification Chinese Leaderboard** ๐Ÿงก๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "data": DATA_CLASSIFICATION_ZH, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH) + }, + { + "language": "Danish", + "description": "**Classification Danish Leaderboard** ๐Ÿค๐Ÿ‡ฉ๐Ÿ‡ฐ", + "credits": danish_credits, + "data": DATA_CLASSIFICATION_DA, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA) + }, + { + "language": "French", + "description": "**Classification French Leaderboard** ๐Ÿ’™๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "data": DATA_CLASSIFICATION_FR, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR) + }, + { + "language": "Norwegian", + "language_long": "Norwegian Bokmรฅl", + "description": "**Classification Norwegian Leaderboard** ๐Ÿ’™๐Ÿ‡ณ๐Ÿ‡ด", + "credits": norwegian_credits, + "data": DATA_CLASSIFICATION_NB, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB) + }, + { + "language": "Polish", + "description": "**Classification Polish Leaderboard** ๐Ÿค๐Ÿ‡ต๐Ÿ‡ฑ", + "credits": polish_credits, + "data": DATA_CLASSIFICATION_PL, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL) + }, + { + "language": "Swedish", + "description": "**Classification Swedish Leaderboard** ๐Ÿ’›๐Ÿ‡ธ๐Ÿ‡ช", + "credits": norwegian_credits, + "data": DATA_CLASSIFICATION_SV, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV) + }, + { + "language": "Other", + "language_long": "47 (Only languages not included in the other tabs)", + "description": "**Classification Other Languages Leaderboard** ๐Ÿ’œ๐Ÿ’š๐Ÿ’™", + "data": DATA_CLASSIFICATION_OTHER, + "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER) + } + ] + }, + "Clustering": { + "metric": "Validity Measure (v_measure)", + "data": [ + { + "language": "English", + "description": "**Clustering Leaderboard** โœจ", + "data": DATA_CLUSTERING, + "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING) + }, + { + "language": "Chinese", + "description": "**Clustering Chinese Leaderboard** โœจ๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "data": DATA_CLUSTERING_ZH, + "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH) + }, + { + "language": "French", + "description": "**Clustering French Leaderboard** โœจ๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "data": DATA_CLUSTERING_FR, + "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR) + }, + { + "language": "German", + "description": "**Clustering German Leaderboard** โœจ๐Ÿ‡ฉ๐Ÿ‡ช", + "credits": "[Silvan](https://github.com/slvnwhrl)", + "data": DATA_CLUSTERING_DE, + "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE) + }, + { + "language": "Polish", + "description": "**Clustering Polish Leaderboard** โœจ๐Ÿ‡ต๐Ÿ‡ฑ", + "credits": polish_credits, + "data": DATA_CLUSTERING_PL, + "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL) + }, + ] + }, + "Pair Classification": { + "metric": "Average Precision based on Cosine Similarities (cos_sim_ap)", + "data": [ + { + "language": "English", + "description": "**Pair Classification English Leaderboard** ๐ŸŽญ", + "data": DATA_PAIR_CLASSIFICATION, + "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION) + }, + { + "language": "Chinese", + "description": "**Pair Classification Chinese Leaderboard** ๐ŸŽญ๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "data": DATA_PAIR_CLASSIFICATION_ZH, + "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH) + }, + { + "language": "French", + "description": "**Pair Classification French Leaderboard** ๐ŸŽญ๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "data": DATA_PAIR_CLASSIFICATION_FR, + "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR) + }, + { + "language": "Polish", + "description": "**Pair Classification Polish Leaderboard** ๐ŸŽญ๐Ÿ‡ต๐Ÿ‡ฑ", + "credits": polish_credits, + "data": DATA_PAIR_CLASSIFICATION_PL, + "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL) + }, + ] + }, + "Reranking": { + "metric": "Mean Average Precision (MAP)", + "data": [ + { + "language": "English", + "description": "**Reranking English Leaderboard** ๐Ÿฅˆ", + "data": DATA_RERANKING, + "refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING) + }, + { + "language": "Chinese", + "description": "**Reranking Chinese Leaderboard** ๐Ÿฅˆ๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "data": DATA_RERANKING_ZH, + "refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH) + }, + { + "language": "French", + "description": "**Reranking French Leaderboard** ๐Ÿฅˆ๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "data": DATA_RERANKING_FR, + "refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR) + } + ] + }, + "Retrieval": { + "metric": "Normalized Discounted Cumulative Gain @ k (ndcg_at_10)", + "data": [ + { + "language": "English", + "description": "**Retrieval English Leaderboard** ๐Ÿ”Ž", + "data": DATA_RETRIEVAL, + "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL) + }, + { + "language": "Chinese", + "description": "**Retrieval Chinese Leaderboard** ๐Ÿ”Ž๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "data": DATA_RETRIEVAL_ZH, + "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH) + }, + { + "language": "French", + "description": "**Retrieval French Leaderboard** ๐Ÿ”Ž๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "data": DATA_RETRIEVAL_FR, + "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR) + }, + { + "language": "Law", + "language_long": "English, German, Chinese", + "description": "**Retrieval Law Leaderboard** ๐Ÿ”Žโš–๏ธ", + "credits": "[Voyage AI](https://www.voyageai.com/)", + "data": DATA_RETRIEVAL_LAW, + "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_LAW) + }, + { + "language": "Polish", + "description": "**Retrieval Polish Leaderboard** ๐Ÿ”Ž๐Ÿ‡ต๐Ÿ‡ฑ", + "credits": polish_credits, + "data": DATA_RETRIEVAL_PL, + "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL) + } + ] + }, + "STS": { + "metric": "Spearman correlation based on cosine similarity", + "data": [ + { + "language": "English", + "description": "**STS English Leaderboard** ๐Ÿค–", + "data": DATA_STS_EN, + "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS) + }, + { + "language": "Chinese", + "description": "**STS Chinese Leaderboard** ๐Ÿค–๐Ÿ‡จ๐Ÿ‡ณ", + "credits": chinese_credits, + "data": DATA_STS_ZH, + "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH) + }, + { + "language": "French", + "description": "**STS French Leaderboard** ๐Ÿค–๐Ÿ‡ซ๐Ÿ‡ท", + "credits": french_credits, + "data": DATA_STS_FR, + "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR) + }, + { + "language": "Polish", + "description": "**STS Polish Leaderboard** ๐Ÿค–๐Ÿ‡ต๐Ÿ‡ฑ", + "credits": polish_credits, + "data": DATA_STS_PL, + "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL) + }, + { + "language": "Other", + "language_long": "Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)", + "description": "**STS Other Leaderboard** ๐Ÿ‘ฝ", + "data": DATA_STS_OTHER, + "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER) + }, + ] + }, + "Summarization": { + "metric": "Spearman correlation based on cosine similarity", + "data": [ + { + "language": "English", + "description": "**Summarization Leaderboard** ๐Ÿ“œ", + "data": DATA_SUMMARIZATION, + "refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION) + }, + { + "language": "French", + "description": "**Summarization Leaderboard** ๐Ÿ“œ", + "credits": french_credits, + "data": DATA_SUMMARIZATION_FR, + "refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR) + } + ] + } +} + +dataframes = [] +full_dataframes = [] +tabs = [] + +# The following JavaScript function updates the URL parameters based on the selected task and language +# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language +# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects +# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio +set_window_url_params = """ +function(goalUrlObject) { + const params = new URLSearchParams(window.location.search); + for (const [key, value] of Object.entries(goalUrlObject)) { + params.set(key, value); + }; + const queryString = '?' + params.toString(); + console.log(queryString); + window.history.replaceState({}, '', queryString); + return []; +} +""" + +def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict): + current_task_language["task"] = event.target.id + # Either use the cached language for this task or the 1st language + current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id) + return current_task_language, language_per_task + +def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict): + current_task_language["language"] = event.target.id + if "task" not in current_task_language: + current_task_language["task"] = "overall" + language_per_task[current_task_language["task"]] = event.target.id + return current_task_language, language_per_task + +NUMERIC_INTERVALS = { + "<100M": pd.Interval(0, 100, closed="right"), + "100M to 250M": pd.Interval(100, 250, closed="right"), + "250M to 500M": pd.Interval(250, 500, closed="right"), + "500M to 1B": pd.Interval(500, 1000, closed="right"), + ">1B": pd.Interval(1000, 1_000_000, closed="right"), +} + +MODEL_TYPES = [ + "Open", + "Proprietary", + "Sentence Transformers", +] + +def filter_data(search_query, model_types, model_sizes, *full_dataframes): + output_dataframes = [] + for df in full_dataframes: + # Apply the search query + if search_query: + names = df["Model"].map(lambda x: re.match("(.+)", x).group(1)) + masks = [] + for query in search_query.split(";"): + masks.append(names.str.contains(query)) + df = df[reduce(lambda a, b: a | b, masks)] + + # Apply the model type filtering + if set(model_types) != set(MODEL_TYPES): + masks = [] + for model_type in model_types: + if model_type == "Open": + masks.append(~df["Model"].isin(PROPRIETARY_MODELS)) + elif model_type == "Proprietary": + masks.append(df["Model"].isin(PROPRIETARY_MODELS)) + elif model_type == "Sentence Transformers": + masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS)) + if masks: + df = df[reduce(lambda a, b: a | b, masks)] + else: + df = pd.DataFrame(columns=df.columns) + + # Apply the model size filtering + if set(model_sizes) != set(NUMERIC_INTERVALS.keys()): + numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes])) + sizes = df["Model Size (Million Parameters)"].replace('', 0) + mask = sizes.apply(lambda size: any(numeric_interval.contains(size))) + df = df[mask] + + output_dataframes.append(df) + return output_dataframes + +with gr.Blocks(css=css) as block: + + # Store the current task and language for updating the URL. This is a bit hacky, but it works + # for passing the current task and language to the JavaScript function via Gradio + current_task_language = gr.JSON(value=dict(), visible=False) + language_per_task = gr.JSON(value=dict(), visible=False) + gr.Markdown(f""" Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the MTEB GitHub repository ๐Ÿค— Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models. """) - with gr.Tabs(): - with gr.TabItem("Overall"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Overall MTEB English leaderboard** ๐Ÿ”ฎ - - - **Metric:** Various, refer to task tabs - - **Languages:** English - """) - with gr.Row(): - data_overall = gr.components.Dataframe( - DATA_OVERALL, - datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL.columns), - type="pandas", - height=600, - ) - with gr.Row(): - data_run_overall = gr.Button("Refresh") - data_run_overall.click(get_mteb_average, inputs=None, outputs=data_overall) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **Overall MTEB Chinese leaderboard (C-MTEB)** ๐Ÿ”ฎ๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** Various, refer to task tabs - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_overall_zh = gr.components.Dataframe( - DATA_OVERALL_ZH, - datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_ZH.columns), - type="pandas", - height=600, - ) - with gr.Row(): - data_run_overall_zh = gr.Button("Refresh") - data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Overall MTEB French leaderboard (F-MTEB)** ๐Ÿ”ฎ๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** Various, refer to task tabs - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_overall_fr = gr.components.Dataframe( - DATA_OVERALL_FR, - datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_FR.columns), - type="pandas", - height=600, - ) - with gr.Row(): - data_overall_fr = gr.Button("Refresh") - data_overall_fr.click(get_mteb_average_fr, inputs=None, outputs=data_overall_fr) - with gr.TabItem("Polish"): - with gr.Row(): - gr.Markdown(""" - **Overall MTEB Polish leaderboard (PL-MTEB)** ๐Ÿ”ฎ๐Ÿ‡ต๐Ÿ‡ฑ - - - **Metric:** Various, refer to task tabs - - **Languages:** Polish - - **Credits:** [Rafaล‚ Poล›wiata](https://github.com/rafalposwiata), [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840) - """) - with gr.Row(): - data_overall_pl = gr.components.Dataframe( - DATA_OVERALL_PL, - datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_PL.columns), - type="pandas", - height=600, - ) - with gr.Row(): - data_run_overall_pl = gr.Button("Refresh") - data_run_overall_pl.click(get_mteb_average_pl, inputs=None, outputs=data_overall_pl) - with gr.TabItem("Bitext Mining"): - with gr.TabItem("English-X"): - with gr.Row(): - gr.Markdown(""" - **Bitext Mining English-X Leaderboard** ๐ŸŽŒ - - - **Metric:** [F1](https://huggingface.co./spaces/evaluate-metric/f1) - - **Languages:** 117 (Pairs of: English & other language) - """) - with gr.Row(): - data_bitext_mining = gr.components.Dataframe( - DATA_BITEXT_MINING, - datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns), - type="pandas", - ) - with gr.Row(): - data_run_bitext_mining = gr.Button("Refresh") - data_run_bitext_mining.click( - partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING), - outputs=data_bitext_mining, - ) - with gr.TabItem("Danish"): - with gr.Row(): - gr.Markdown(""" - **Bitext Mining Danish Leaderboard** ๐ŸŽŒ๐Ÿ‡ฉ๐Ÿ‡ฐ - - - **Metric:** [F1](https://huggingface.co./spaces/evaluate-metric/f1) - - **Languages:** Danish & Bornholmsk (Danish Dialect) - - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/) - """) - with gr.Row(): - data_bitext_mining_da = gr.components.Dataframe( - DATA_BITEXT_MINING_OTHER, - datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING_OTHER.columns), - type="pandas", - ) - with gr.Row(): - data_run_bitext_mining_da = gr.Button("Refresh") - data_run_bitext_mining_da.click( - partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_OTHER), - outputs=data_bitext_mining_da, - ) - with gr.TabItem("Classification"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Classification English Leaderboard** โค๏ธ - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** English - """) - with gr.Row(): - data_classification_en = gr.components.Dataframe( - DATA_CLASSIFICATION_EN, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_en = gr.Button("Refresh") - data_run_classification_en.click( - partial(get_mteb_data, tasks=["Classification"], langs=["en"]), - outputs=data_classification_en, - ) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **Classification Chinese Leaderboard** ๐Ÿงก๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_classification_zh = gr.components.Dataframe( - DATA_CLASSIFICATION_ZH, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_zh = gr.Button("Refresh") - data_run_classification_zh.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH), - outputs=data_classification_zh, - ) - with gr.TabItem("Danish"): - with gr.Row(): - gr.Markdown(""" - **Classification Danish Leaderboard** ๐Ÿค๐Ÿ‡ฉ๐Ÿ‡ฐ - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** Danish - - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/) - """) - with gr.Row(): - data_classification_da = gr.components.Dataframe( - DATA_CLASSIFICATION_DA, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_da = gr.Button("Refresh") - data_run_classification_da.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA), - outputs=data_run_classification_da, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Classification French Leaderboard** ๐Ÿ’™๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_classification_fr = gr.components.Dataframe( - DATA_CLASSIFICATION_FR, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_FR.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_fr = gr.Button("Refresh") - data_run_classification_fr.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR), - outputs=data_run_classification_fr, - ) - with gr.TabItem("Norwegian"): - with gr.Row(): - gr.Markdown(""" - **Classification Norwegian Leaderboard** ๐Ÿ’™๐Ÿ‡ณ๐Ÿ‡ด - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** Norwegian Bokmรฅl - - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/) - """) - with gr.Row(): - data_classification_nb = gr.components.Dataframe( - DATA_CLASSIFICATION_NB, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_nb = gr.Button("Refresh") - data_run_classification_nb.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB), - outputs=data_classification_nb, - ) - with gr.TabItem("Polish"): - with gr.Row(): - gr.Markdown(""" - **Classification Polish Leaderboard** ๐Ÿค๐Ÿ‡ต๐Ÿ‡ฑ - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** Polish - - **Credits:** [Rafaล‚ Poล›wiata](https://github.com/rafalposwiata) - """) - with gr.Row(): - data_classification_pl = gr.components.Dataframe( - DATA_CLASSIFICATION_PL, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_PL.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_pl = gr.Button("Refresh") - data_run_classification_pl.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL), - outputs=data_classification_pl, - ) - with gr.TabItem("Swedish"): - with gr.Row(): - gr.Markdown(""" - **Classification Swedish Leaderboard** ๐Ÿ’›๐Ÿ‡ธ๐Ÿ‡ช - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** Swedish - - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/) - """) - with gr.Row(): - data_classification_sv = gr.components.Dataframe( - DATA_CLASSIFICATION_SV, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns), - type="pandas", - ) - with gr.Row(): - data_run_classification_sv = gr.Button("Refresh") - data_run_classification_sv.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV), - outputs=data_classification_sv, - ) - with gr.TabItem("Other"): - with gr.Row(): - gr.Markdown(""" - **Classification Other Languages Leaderboard** ๐Ÿ’œ๐Ÿ’š๐Ÿ’™ - - - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy) - - **Languages:** 47 (Only languages not included in the other tabs) - """) - with gr.Row(): - data_classification = gr.components.Dataframe( - DATA_CLASSIFICATION_OTHER, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10, - type="pandas", - ) - with gr.Row(): - data_run_classification = gr.Button("Refresh") - data_run_classification.click( - partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER), - outputs=data_classification, - ) - with gr.TabItem("Clustering"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Clustering Leaderboard** โœจ - - - **Metric:** Validity Measure (v_measure) - - **Languages:** English - """) - with gr.Row(): - data_clustering = gr.components.Dataframe( - DATA_CLUSTERING, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING.columns), - type="pandas", - ) - with gr.Row(): - data_run_clustering_en = gr.Button("Refresh") - data_run_clustering_en.click( - partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING), - outputs=data_clustering, - ) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **Clustering Chinese Leaderboard** โœจ๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** Validity Measure (v_measure) - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_clustering_zh = gr.components.Dataframe( - DATA_CLUSTERING_ZH, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns), - type="pandas", - ) - with gr.Row(): - data_run_clustering_zh = gr.Button("Refresh") - data_run_clustering_zh.click( - partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH), - outputs=data_clustering_zh, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Clustering French Leaderboard** โœจ๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** Validity Measure (v_measure) - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_clustering_fr = gr.components.Dataframe( - DATA_CLUSTERING_FR, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_FR.columns), - type="pandas", - ) - with gr.Row(): - data_run_clustering_fr = gr.Button("Refresh") - data_run_clustering_fr.click( - partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR), - outputs=data_clustering_fr, - ) - with gr.TabItem("German"): - with gr.Row(): - gr.Markdown(""" - **Clustering German Leaderboard** โœจ๐Ÿ‡ฉ๐Ÿ‡ช - - - **Metric:** Validity Measure (v_measure) - - **Languages:** German - - **Credits:** [Silvan](https://github.com/slvnwhrl) - """) - with gr.Row(): - data_clustering_de = gr.components.Dataframe( - DATA_CLUSTERING_DE, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_clustering_de = gr.Button("Refresh") - data_run_clustering_de.click( - partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE), - outputs=data_clustering_de, - ) - with gr.TabItem("Polish"): - with gr.Row(): - gr.Markdown(""" - **Clustering Polish Leaderboard** โœจ๐Ÿ‡ต๐Ÿ‡ฑ - - - **Metric:** Validity Measure (v_measure) - - **Languages:** Polish - - **Credits:** [Rafaล‚ Poล›wiata](https://github.com/rafalposwiata) - """) - with gr.Row(): - data_clustering_pl = gr.components.Dataframe( - DATA_CLUSTERING_PL, - datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_PL.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_clustering_pl = gr.Button("Refresh") - data_run_clustering_pl.click( - partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL), - outputs=data_clustering_pl, - ) - with gr.TabItem("Pair Classification"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Pair Classification English Leaderboard** ๐ŸŽญ - - - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap) - - **Languages:** English - """) - with gr.Row(): - data_pair_classification = gr.components.Dataframe( - DATA_PAIR_CLASSIFICATION, - datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns), - type="pandas", - ) - with gr.Row(): - data_run_pair_classification = gr.Button("Refresh") - data_run_pair_classification.click( - partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION), - outputs=data_pair_classification, - ) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **Pair Classification Chinese Leaderboard** ๐ŸŽญ๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap) - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_pair_classification_zh = gr.components.Dataframe( - DATA_PAIR_CLASSIFICATION_ZH, - datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns), - type="pandas", - ) - with gr.Row(): - data_run_pair_classification_zh = gr.Button("Refresh") - data_run_pair_classification_zh.click( - partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH), - outputs=data_pair_classification_zh, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Pair Classification French Leaderboard** ๐ŸŽญ๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap) - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_pair_classification_fr = gr.components.Dataframe( - DATA_PAIR_CLASSIFICATION_FR, - datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_FR.columns), - type="pandas", - ) - with gr.Row(): - data_run_pair_classification_fr = gr.Button("Refresh") - data_run_pair_classification_fr.click( - partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR), - outputs=data_pair_classification_fr, - ) - with gr.TabItem("Polish"): - with gr.Row(): - gr.Markdown(""" - **Pair Classification Polish Leaderboard** ๐ŸŽญ๐Ÿ‡ต๐Ÿ‡ฑ - - - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap) - - **Languages:** Polish - - **Credits:** [Rafaล‚ Poล›wiata](https://github.com/rafalposwiata) - """) - with gr.Row(): - data_pair_classification_pl = gr.components.Dataframe( - DATA_PAIR_CLASSIFICATION_PL, - datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_PL.columns), - type="pandas", - ) - with gr.Row(): - data_run_pair_classification_pl = gr.Button("Refresh") - data_run_pair_classification_pl.click( - partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL), - outputs=data_pair_classification_pl, - ) - with gr.TabItem("Reranking"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Reranking English Leaderboard** ๐Ÿฅˆ - - - **Metric:** Mean Average Precision (MAP) - - **Languages:** English - """) - with gr.Row(): - data_reranking = gr.components.Dataframe( - DATA_RERANKING, - datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns), - type="pandas", - ) - with gr.Row(): - data_run_reranking = gr.Button("Refresh") - data_run_reranking.click( - partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING), - outputs=data_reranking, - ) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **Reranking Chinese Leaderboard** ๐Ÿฅˆ๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** Mean Average Precision (MAP) - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_reranking_zh = gr.components.Dataframe( - DATA_RERANKING_ZH, - datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns), - type="pandas", - ) - with gr.Row(): - data_run_reranking_zh = gr.Button("Refresh") - data_run_reranking_zh.click( - partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH), - outputs=data_reranking_zh, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Reranking French Leaderboard** ๐Ÿฅˆ๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** Mean Average Precision (MAP) - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_reranking_fr = gr.components.Dataframe( - DATA_RERANKING_FR, - datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_FR.columns), - type="pandas", - ) - with gr.Row(): - data_run_reranking_fr = gr.Button("Refresh") - data_run_reranking_fr.click( - partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR), - outputs=data_reranking_fr, - ) - with gr.TabItem("Retrieval"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Retrieval English Leaderboard** ๐Ÿ”Ž - - - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10) - - **Languages:** English - """) - with gr.Row(): - data_retrieval = gr.components.Dataframe( - DATA_RETRIEVAL, - # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2) - datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_retrieval = gr.Button("Refresh") - data_run_retrieval.click( - partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL), - outputs=data_retrieval, - ) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **Retrieval Chinese Leaderboard** ๐Ÿ”Ž๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10) - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_retrieval_zh = gr.components.Dataframe( - DATA_RETRIEVAL_ZH, - # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2) - datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_retrieval_zh = gr.Button("Refresh") - data_run_retrieval_zh.click( - partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH), - outputs=data_retrieval_zh, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Retrieval French Leaderboard** ๐Ÿ”Ž๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10) - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_retrieval_fr = gr.components.Dataframe( - DATA_RETRIEVAL_FR, - # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2) - datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_FR.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_retrieval_fr = gr.Button("Refresh") - data_run_retrieval_fr.click( - partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR), - outputs=data_retrieval_fr, - ) - with gr.TabItem("Law"): - with gr.Row(): - gr.Markdown(""" - **Retrieval Law Leaderboard** ๐Ÿ”Žโš–๏ธ - - - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10) - - **Languages:** English, German, Chinese - - **Credits:** [Voyage AI](https://www.voyageai.com/) - """) - with gr.Row(): - data_retrieval_law = gr.components.Dataframe( - DATA_RETRIEVAL_LAW, - # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2) - datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_LAW.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_retrieval_law = gr.Button("Refresh") - data_run_retrieval_law.click( - partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_LAW), - outputs=data_retrieval_law, - ) - with gr.TabItem("Polish"): - with gr.Row(): - gr.Markdown(""" - **Retrieval Polish Leaderboard** ๐Ÿ”Ž๐Ÿ‡ต๐Ÿ‡ฑ - - - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10) - - **Languages:** Polish - - **Credits:** [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840) - """) - with gr.Row(): - data_retrieval_pl = gr.components.Dataframe( - DATA_RETRIEVAL_PL, - # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2) - datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_PL.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_retrieval_pl = gr.Button("Refresh") - data_run_retrieval_pl.click( - partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL), - outputs=data_retrieval_pl, - ) - with gr.TabItem("STS"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **STS English Leaderboard** ๐Ÿค– - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** English - """) - with gr.Row(): - data_sts_en = gr.components.Dataframe( - DATA_STS_EN, - datatype=["number", "markdown"] + ["number"] * len(DATA_STS_EN.columns), - type="pandas", - ) - with gr.Row(): - data_run_sts_en = gr.Button("Refresh") - data_run_sts_en.click( - partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS), - outputs=data_sts_en, - ) - with gr.TabItem("Chinese"): - with gr.Row(): - gr.Markdown(""" - **STS Chinese Leaderboard** ๐Ÿค–๐Ÿ‡จ๐Ÿ‡ณ - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** Chinese - - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) - """) - with gr.Row(): - data_sts_zh = gr.components.Dataframe( - DATA_STS_ZH, - datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns), - type="pandas", - ) - with gr.Row(): - data_run_sts_zh = gr.Button("Refresh") - data_run_sts_zh.click( - partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH), - outputs=data_sts_zh, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **STS French Leaderboard** ๐Ÿค–๐Ÿ‡ซ๐Ÿ‡ท - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_sts_fr = gr.components.Dataframe( - DATA_STS_FR, - datatype=["number", "markdown"] + ["number"] * len(DATA_STS_FR.columns), - type="pandas", - ) - with gr.Row(): - data_run_sts_fr = gr.Button("Refresh") - data_run_sts_fr.click( - partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR), - outputs=data_sts_fr, - ) - with gr.TabItem("Polish"): - with gr.Row(): - gr.Markdown(""" - **STS Polish Leaderboard** ๐Ÿค–๐Ÿ‡ต๐Ÿ‡ฑ - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** Polish - - **Credits:** [Rafaล‚ Poล›wiata](https://github.com/rafalposwiata) - """) - with gr.Row(): - data_sts_pl = gr.components.Dataframe( - DATA_STS_PL, - datatype=["number", "markdown"] + ["number"] * len(DATA_STS_PL.columns), - type="pandas", - ) - with gr.Row(): - data_run_sts_pl = gr.Button("Refresh") - data_run_sts_pl.click( - partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL), - outputs=data_sts_pl, - ) - with gr.TabItem("Other"): - with gr.Row(): - gr.Markdown(""" - **STS Other Leaderboard** ๐Ÿ‘ฝ - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs) - """) - with gr.Row(): - data_sts_other = gr.components.Dataframe( - DATA_STS_OTHER, - datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2, - type="pandas", - ) - with gr.Row(): - data_run_sts_other = gr.Button("Refresh") - data_run_sts_other.click( - partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER), - outputs=data_sts_other, - ) - with gr.TabItem("Summarization"): - with gr.TabItem("English"): - with gr.Row(): - gr.Markdown(""" - **Summarization Leaderboard** ๐Ÿ“œ - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** English - """) - with gr.Row(): - data_summarization = gr.components.Dataframe( - DATA_SUMMARIZATION, - datatype=["number", "markdown"] + ["number"] * 2, - type="pandas", - ) - with gr.Row(): - data_run = gr.Button("Refresh") - data_run.click( - partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION), - outputs=data_summarization, - ) - with gr.TabItem("French"): - with gr.Row(): - gr.Markdown(""" - **Summarization Leaderboard** ๐Ÿ“œ - - - **Metric:** Spearman correlation based on cosine similarity - - **Languages:** French - - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion) - """) - with gr.Row(): - data_summarization_fr = gr.components.Dataframe( - DATA_SUMMARIZATION_FR, - datatype=["number", "markdown"] + ["number"] * 2, - type="pandas", - ) - with gr.Row(): - data_run_summarization_fr = gr.Button("Refresh") - data_run_summarization_fr.click( - partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR), - outputs=data_run_summarization_fr, - ) + + with gr.Row(): + search_bar = gr.Textbox( + label="Search Bar (separate multiple queries with `;`)", + placeholder=" ๐Ÿ” Search for a model and press enter...", + ) + filter_model_type = gr.CheckboxGroup( + label="Model types", + choices=MODEL_TYPES, + value=MODEL_TYPES, + interactive=True, + elem_classes=["filter-checkbox-group"] + ) + filter_model_sizes = gr.CheckboxGroup( + label="Model sizes (in number of parameters)", + choices=list(NUMERIC_INTERVALS.keys()), + value=list(NUMERIC_INTERVALS.keys()), + interactive=True, + elem_classes=["filter-checkbox-group"], + scale=2, + ) + + with gr.Tabs() as outer_tabs: + # Store the tabs for updating them on load based on URL parameters + tabs.append(outer_tabs) + + for task, task_values in data.items(): + metric = task_values["metric"] + task_tab_id = task.lower().replace(" ", "-") + + # Overall, Bitext Mining, Classification, etc. + with gr.Tab(task, id=task_tab_id) as task_tab: + # For updating the 'task' in the URL + task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params) + + with gr.Tabs() as task_tabs: + # Store the task tabs for updating them on load based on URL parameters + tabs.append(task_tabs) + + for item in task_values["data"]: + item_tab_id = item["language"].lower().replace(" ", "-") + + # English, Chinese, French, etc. + with gr.Tab(item["language"], id=item_tab_id) as item_tab: + # For updating the 'language' in the URL + item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params) + + with gr.Row(): + gr.Markdown(f""" + {item['description']} + + - **Metric:** {metric} + - **Languages:** {item['language_long'] if 'language_long' in item else item['language']} + {"- **Credits:** " + item['credits'] if "credits" in item else ''} + """) + + with gr.Row(): + datatype = ["number", "markdown"] + ["number"] * len(item["data"]) + dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500) + dataframes.append(dataframe) + + full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False) + full_dataframes.append(full_dataframe) + + with gr.Row(): + refresh_button = gr.Button("Refresh") + refresh_button.click(item["refresh"], inputs=None, outputs=dataframe) + gr.Markdown(f""" - **Total Datasets**: {NUM_DATASETS} - **Total Languages**: 113 @@ -2389,16 +2193,35 @@ with block: } ``` """) - # Running the functions on page load in addition to when the button is clicked - # This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab - """ - block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining) - """ + + def set_tabs_on_load(request: gr.Request): + """Set the selected tab based on the URL parameters on load.""" + global tabs + valid_task_keys = [child.id for child in tabs[0].children] + return_tabs = [gr.Tabs()] * len(tabs) + + query_params = request.request.query_params + task_key = query_params.get("task", "overall") + if task_key not in valid_task_keys: + task_key = "overall" + return_tabs[0] = gr.Tabs(selected=task_key) + + tabs_idx = valid_task_keys.index(task_key) + 1 + language_key = query_params.get("language", "english") + return_tabs[tabs_idx] = gr.Tabs(selected=language_key) + current_task_language = {"task": task_key, "language": language_key} + language_per_task = {task_key: language_key} + return return_tabs + [current_task_language, language_per_task] + + block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task]) + + search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) + filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) + filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) block.queue(max_size=10) block.launch() - # Possible changes: # Could add graphs / other visual content # Could add verification marks