diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,14 +1,17 @@
-from functools import partial
+from functools import partial, reduce
import json
import os
+import re
from datasets import load_dataset
import gradio as gr
-from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url
+from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from tqdm.autonotebook import tqdm
+from utils.model_size import get_model_parameters_memory
+
TASKS = [
"BitextMining",
"Classification",
@@ -21,7 +24,7 @@ TASKS = [
]
TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
-TASK_LIST_BITEXT_MINING_OTHER = ["BornholmBitextMining"]
+TASK_LIST_BITEXT_MINING_DA = ["BornholmBitextMining"]
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification (en)",
@@ -817,98 +820,230 @@ EXTERNAL_MODEL_TO_SEQLEN = {
}
EXTERNAL_MODEL_TO_SIZE = {
- "allenai-specter": 0.44,
- "all-MiniLM-L12-v2": 0.13,
- "all-MiniLM-L6-v2": 0.09,
- "all-mpnet-base-v2": 0.44,
- "bert-base-10lang-cased": 0.61,
- "bert-base-15lang-cased": 0.61,
- "bert-base-25lang-cased": 0.61,
- "bert-base-multilingual-cased": 0.71,
- "bert-base-multilingual-uncased": 0.67,
- "bert-base-uncased": 0.44,
- "bert-base-swedish-cased": 0.50,
- "bge-base-zh-v1.5": 0.41,
- "bge-large-en-v1.5": 1.30,
- "bge-large-zh-v1.5": 1.30,
- "bge-large-zh-noinstruct": 1.30,
- "bge-small-zh-v1.5": 0.10,
- "camembert-base": 0.45,
- "camembert-large": 1.35,
- "cross-en-de-roberta-sentence-transformer": 1.11,
- "contriever-base-msmarco": 0.44,
- "distilbert-base-25lang-cased": 0.44,
- "distilbert-base-en-fr-cased": 0.44,
- "distilbert-base-en-fr-es-pt-it-cased": 0.44,
- "distilbert-base-fr-cased": 0.44,
- "distilbert-base-uncased": 0.44,
- "DanskBERT": 0.50,
- "distiluse-base-multilingual-cased-v2": 0.54,
- "dfm-encoder-large-v1": 1.42,
- "dfm-sentence-encoder-large-1": 1.63,
- "e5-base": 0.44,
- "e5-large": 1.34,
- "e5-mistral-7b-instruct": 14.22,
- "e5-small": 0.13,
- "electra-small-nordic": 0.09,
- "electra-small-swedish-cased-discriminator": 0.06,
- "flaubert_base_cased": 0.55,
- "flaubert_base_uncased": 0.55,
- "flaubert_large_cased": 1.49,
- "gbert-base": 0.44,
- "gbert-large": 1.35,
- "gelectra-base": 0.44,
- "gelectra-large": 1.34,
- "glove.6B.300d": 0.48,
- "google-gecko.text-embedding-preview-0409": 2.29,
- "google-gecko-256.text-embedding-preview-0409": 2.29,
- "gottbert-base": 0.51,
- "gtr-t5-base": 0.22,
- "gtr-t5-large": 0.67,
- "gtr-t5-xl": 2.48,
- "gtr-t5-xxl": 9.73,
- "herbert-base-retrieval-v2": 0.50,
- "komninos": 0.27,
- "luotuo-bert-medium": 1.31,
- "LASER2": 0.17,
- "LaBSE": 1.88,
- "m3e-base": 0.41,
- "m3e-large": 0.41,
- "msmarco-bert-co-condensor": 0.44,
- "multi-qa-MiniLM-L6-cos-v1": 0.09,
- "multilingual-e5-base": 1.11,
- "multilingual-e5-small": 0.47,
- "multilingual-e5-large": 2.24,
- "nb-bert-base": 0.71,
- "nb-bert-large": 1.42,
- "nomic-embed-text-v1.5-64": 0.55,
- "nomic-embed-text-v1.5-128": 0.55,
- "nomic-embed-text-v1.5-256": 0.55,
- "nomic-embed-text-v1.5-512": 0.55,
- "norbert3-base": 0.52,
- "norbert3-large": 1.47,
- "paraphrase-multilingual-mpnet-base-v2": 1.11,
- "paraphrase-multilingual-MiniLM-L12-v2": 0.47,
- "sentence-camembert-base": 0.44,
- "sentence-camembert-large": 1.35,
- "sentence-croissant-llm-base": 5.12,
- "sentence-bert-swedish-cased": 0.50,
- "sentence-t5-base": 0.22,
- "sentence-t5-large": 0.67,
- "sentence-t5-xl": 2.48,
- "sentence-t5-xxl": 9.73,
- "silver-retriever-base-v1": 0.50,
- "sup-simcse-bert-base-uncased": 0.44,
- "st-polish-paraphrase-from-distilroberta": 0.50,
- "st-polish-paraphrase-from-mpnet": 0.50,
- "text2vec-base-chinese": 0.41,
- "text2vec-large-chinese": 1.30,
- "unsup-simcse-bert-base-uncased": 0.44,
- "use-cmlm-multilingual": 1.89,
- "voyage-law-2": 2.45,
- "voyage-lite-02-instruct": 2.45,
- "xlm-roberta-base": 1.12,
- "xlm-roberta-large": 2.24,
+ "allenai-specter": 110,
+ "all-MiniLM-L12-v2": 33,
+ "all-MiniLM-L6-v2": 23,
+ "all-mpnet-base-v2": 110,
+ "bert-base-10lang-cased": 138,
+ "bert-base-15lang-cased": 138,
+ "bert-base-25lang-cased": 138,
+ "bert-base-multilingual-cased": 179,
+ "bert-base-multilingual-uncased": 168,
+ "bert-base-uncased": 110,
+ "bert-base-swedish-cased": 125,
+ "bge-base-zh-v1.5": 102,
+ "bge-large-zh-v1.5": 326,
+ "bge-large-zh-noinstruct": 326,
+ "bge-small-zh-v1.5": 24,
+ "camembert-base": 111,
+ "camembert-large": 338,
+ "cross-en-de-roberta-sentence-transformer": 278,
+ "contriever-base-msmarco": 110,
+ "distilbert-base-25lang-cased": 110,
+ "distilbert-base-en-fr-cased": 110,
+ "distilbert-base-en-fr-es-pt-it-cased": 110,
+ "distilbert-base-fr-cased": 110,
+ "distilbert-base-uncased": 110,
+ "DanskBERT": 125,
+ "distiluse-base-multilingual-cased-v2": 135,
+ "dfm-encoder-large-v1": 355,
+ "dfm-sentence-encoder-large-1": 355,
+ "e5-base": 110,
+ "e5-large": 335,
+ "e5-mistral-7b-instruct": 7111,
+ "e5-small": 33,
+ "electra-small-nordic": 23,
+ "electra-small-swedish-cased-discriminator": 16,
+ "flaubert_base_cased": 138,
+ "flaubert_base_uncased": 138,
+ "flaubert_large_cased": 372,
+ "gbert-base": 110,
+ "gbert-large": 337,
+ "gelectra-base": 110,
+ "gelectra-large": 335,
+ "glove.6B.300d": 120,
+ "google-gecko.text-embedding-preview-0409": 1200,
+ "google-gecko-256.text-embedding-preview-0409": 1200,
+ "gottbert-base": 127,
+ "gtr-t5-base": 110,
+ "gtr-t5-large": 168,
+ "gtr-t5-xl": 1240,
+ "gtr-t5-xxl": 4865,
+ "herbert-base-retrieval-v2": 125,
+ "komninos": 134,
+ "luotuo-bert-medium": 328,
+ "LASER2": 43,
+ "LaBSE": 471,
+ "m3e-base": 102,
+ "m3e-large": 102,
+ "msmarco-bert-co-condensor": 110,
+ "multi-qa-MiniLM-L6-cos-v1": 23,
+ "multilingual-e5-base": 278,
+ "multilingual-e5-small": 118,
+ "multilingual-e5-large": 560,
+ "nb-bert-base": 179,
+ "nb-bert-large": 355,
+ "nomic-embed-text-v1.5-64": 138,
+ "nomic-embed-text-v1.5-128": 138,
+ "nomic-embed-text-v1.5-256": 138,
+ "nomic-embed-text-v1.5-512": 138,
+ "norbert3-base": 131,
+ "norbert3-large": 368,
+ "paraphrase-multilingual-mpnet-base-v2": 278,
+ "paraphrase-multilingual-MiniLM-L12-v2": 118,
+ "sentence-camembert-base": 110,
+ "sentence-camembert-large": 337,
+ "sentence-croissant-llm-base": 1280,
+ "sentence-bert-swedish-cased": 125,
+ "sentence-t5-base": 110,
+ "sentence-t5-large": 168,
+ "sentence-t5-xl": 1240,
+ "sentence-t5-xxl": 4865,
+ "silver-retriever-base-v1": 125,
+ "sup-simcse-bert-base-uncased": 110,
+ "st-polish-paraphrase-from-distilroberta": 125,
+ "st-polish-paraphrase-from-mpnet": 125,
+ "text2vec-base-chinese": 102,
+ "text2vec-large-chinese": 326,
+ "unsup-simcse-bert-base-uncased": 110,
+ "use-cmlm-multilingual": 472,
+ "voyage-law-2": 1220,
+ "voyage-lite-02-instruct": 1220,
+ "xlm-roberta-base": 279,
+ "xlm-roberta-large": 560,
+}
+
+PROPRIETARY_MODELS = {
+ "Cohere-embed-english-v3.0",
+ "Cohere-embed-multilingual-v3.0",
+ "Cohere-embed-multilingual-light-v3.0",
+ "Baichuan-text-embedding",
+ "mistral-embed",
+ "OpenSearch-text-hybrid",
+ "text-embedding-3-small",
+ "text-embedding-3-large",
+ "text-embedding-3-large-256",
+ "text-embedding-ada-002",
+ "text-similarity-ada-001",
+ "text-similarity-babbage-001",
+ "text-similarity-curie-001",
+ "text-similarity-davinci-001",
+ "text-search-ada-doc-001",
+ "text-search-ada-query-001",
+ "text-search-ada-001",
+ "text-search-curie-001",
+ "text-search-babbage-001",
+ "text-search-davinci-001",
+ "titan-embed-text-v1",
+ "voyage-2",
+ "voyage-code-2",
+ "voyage-law-2",
+ "voyage-lite-01-instruct",
+ "voyage-lite-02-instruct",
+ "google-gecko.text-embedding-preview-0409",
+ "google-gecko-256.text-embedding-preview-0409",
+}
+PROPRIETARY_MODELS = {
+ make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co./spaces/mteb/leaderboard"))
+ for model in PROPRIETARY_MODELS
+}
+
+SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
+ "allenai-specter",
+ "allenai-specter",
+ "all-MiniLM-L12-v2",
+ "all-MiniLM-L6-v2",
+ "all-mpnet-base-v2",
+ "bert-base-10lang-cased",
+ "bert-base-15lang-cased",
+ "bert-base-25lang-cased",
+ "bert-base-multilingual-cased",
+ "bert-base-multilingual-uncased",
+ "bert-base-swedish-cased",
+ "bert-base-uncased",
+ "bge-base-zh-v1.5",
+ "bge-large-zh-v1.5",
+ "bge-large-zh-noinstruct",
+ "bge-small-zh-v1.5",
+ "camembert-base",
+ "camembert-large",
+ "contriever-base-msmarco",
+ "cross-en-de-roberta-sentence-transformer",
+ "DanskBERT",
+ "distilbert-base-25lang-cased",
+ "distilbert-base-en-fr-cased",
+ "distilbert-base-en-fr-es-pt-it-cased",
+ "distilbert-base-fr-cased",
+ "distilbert-base-uncased",
+ "distiluse-base-multilingual-cased-v2",
+ "dfm-encoder-large-v1",
+ "dfm-sentence-encoder-large-1",
+ "e5-base",
+ "e5-large",
+ "e5-mistral-7b-instruct",
+ "e5-small",
+ "electra-small-nordic",
+ "electra-small-swedish-cased-discriminator",
+ "flaubert_base_cased",
+ "flaubert_base_uncased",
+ "flaubert_large_cased",
+ "gbert-base",
+ "gbert-large",
+ "gelectra-base",
+ "gelectra-large",
+ "glove.6B.300d",
+ "gottbert-base",
+ "gtr-t5-base",
+ "gtr-t5-large",
+ "gtr-t5-xl",
+ "gtr-t5-xxl",
+ "herbert-base-retrieval-v2",
+ "komninos",
+ "luotuo-bert-medium",
+ "LaBSE",
+ "m3e-base",
+ "m3e-large",
+ "msmarco-bert-co-condensor",
+ "multi-qa-MiniLM-L6-cos-v1",
+ "multilingual-e5-base",
+ "multilingual-e5-large",
+ "multilingual-e5-small",
+ "nb-bert-base",
+ "nb-bert-large",
+ "nomic-embed-text-v1.5-64",
+ "nomic-embed-text-v1.5-128",
+ "nomic-embed-text-v1.5-256",
+ "nomic-embed-text-v1.5-512",
+ "norbert3-base",
+ "norbert3-large",
+ "paraphrase-multilingual-mpnet-base-v2",
+ "paraphrase-multilingual-MiniLM-L12-v2",
+ "sentence-camembert-base",
+ "sentence-camembert-large",
+ "sentence-croissant-llm-base",
+ "sentence-bert-swedish-cased",
+ "sentence-t5-base",
+ "sentence-t5-large",
+ "sentence-t5-xl",
+ "sentence-t5-xxl",
+ "silver-retriever-base-v1",
+ "sup-simcse-bert-base-uncased",
+ "st-polish-paraphrase-from-distilroberta",
+ "st-polish-paraphrase-from-mpnet",
+ "text2vec-base-chinese",
+ "text2vec-large-chinese",
+ "udever-bloom-1b1",
+ "udever-bloom-560m",
+ "universal-sentence-encoder-multilingual-3",
+ "universal-sentence-encoder-multilingual-large-3",
+ "unsup-simcse-bert-base-uncased",
+ "use-cmlm-multilingual",
+ "xlm-roberta-base",
+ "xlm-roberta-large",
+}
+SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
+ make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co./spaces/mteb/leaderboard"))
+ for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
}
MODELS_TO_SKIP = {
@@ -1035,6 +1170,7 @@ MODELS_TO_SKIP = {
"Koat/gte-tiny",
}
+
def add_lang(examples):
if not(examples["eval_language"]):
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
@@ -1060,7 +1196,7 @@ def add_task(examples):
examples["mteb_task"] = "STS"
elif examples["mteb_dataset_name"] in norm(TASK_LIST_SUMMARIZATION + TASK_LIST_SUMMARIZATION_FR):
examples["mteb_task"] = "Summarization"
- elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER):
+ elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_DA):
examples["mteb_task"] = "BitextMining"
else:
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
@@ -1101,51 +1237,25 @@ with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
def get_dim_seq_size(model):
filenames = [sib.rfilename for sib in model.siblings]
- dim, seq, size = "", "", ""
- if "1_Pooling/config.json" in filenames:
- st_config_path = hf_hub_download(model.modelId, filename="1_Pooling/config.json")
- dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
- elif "2_Pooling/config.json" in filenames:
- st_config_path = hf_hub_download(model.modelId, filename="2_Pooling/config.json")
- dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
+ dim, seq = "", ""
+ for filename in filenames:
+ if re.match("\d+_Pooling/config.json", filename):
+ st_config_path = hf_hub_download(model.modelId, filename=filename)
+ dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
+ break
+ for filename in filenames:
+ if re.match("\d+_Dense/config.json", filename):
+ st_config_path = hf_hub_download(model.modelId, filename=filename)
+ dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.modelId, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
- # Get model file size without downloading
- if "pytorch_model.bin" in filenames:
- url = hf_hub_url(model.modelId, filename="pytorch_model.bin")
- meta = get_hf_file_metadata(url)
- size = round(meta.size / 1e9, 2)
- elif "pytorch_model.bin.index.json" in filenames:
- index_path = hf_hub_download(model.modelId, filename="pytorch_model.bin.index.json")
- """
- {
- "metadata": {
- "total_size": 28272820224
- },....
- """
- size = json.load(open(index_path))
- if ("metadata" in size) and ("total_size" in size["metadata"]):
- size = round(size["metadata"]["total_size"] / 1e9, 2)
- elif "model.safetensors" in filenames:
- url = hf_hub_url(model.modelId, filename="model.safetensors")
- meta = get_hf_file_metadata(url)
- size = round(meta.size / 1e9, 2)
- elif "model.safetensors.index.json" in filenames:
- index_path = hf_hub_download(model.modelId, filename="model.safetensors.index.json")
- """
- {
- "metadata": {
- "total_size": 14483464192
- },....
- """
- size = json.load(open(index_path))
- if ("metadata" in size) and ("total_size" in size["metadata"]):
- size = round(size["metadata"]["total_size"] / 1e9, 2)
- return dim, seq, size
+ # Get model file size without downloading. Parameters in million parameters and memory in GB
+ parameters, memory = get_model_parameters_memory(model)
+ return dim, seq, parameters, memory
def make_datasets_clickable(df):
"""Does not work"""
@@ -1156,11 +1266,11 @@ def make_datasets_clickable(df):
return df
def add_rank(df):
- cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens"]]
+ cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
- df.insert(1, "Average", df[cols_to_rank].mean(axis=1, skipna=False))
+ df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
df.sort_values("Average", ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
@@ -1168,7 +1278,7 @@ def add_rank(df):
df.fillna("", inplace=True)
return df
-def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=False, task_to_metric=TASK_TO_METRIC, rank=True):
+def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True):
api = HfApi()
models = api.list_models(filter="mteb")
# Initialize list to models that we cannot fetch metadata from
@@ -1186,7 +1296,8 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
# Model & at least one result
if len(res) > 1:
if add_emb_dim:
- res["Model Size (GB)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
+ res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
+ res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
df_list.append(res)
@@ -1227,10 +1338,12 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
if add_emb_dim:
try:
# Fails on gated repos, so we only include scores for them
- out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (GB)"] = get_dim_seq_size(model)
+ out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = get_dim_seq_size(model)
except:
pass
df_list.append(out)
+ if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
+ SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
@@ -1279,32 +1392,32 @@ def get_mteb_average():
DATA_OVERALL = DATA_OVERALL.round(2)
- DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
+ DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION])
# Only keep rows with at least one score in addition to the "Model" & rank column
- DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 4:].ne("").any(axis=1)]
- DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
- DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING])
+ DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 4:].ne("").any(axis=1)]
- DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
- DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION])
+ DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
- DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RERANKING = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RERANKING])
+ DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
- DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL])
+ DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 4:].ne("").any(axis=1)]
- DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
- DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_STS_EN = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS])
+ DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 4:].ne("").any(axis=1)]
- DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
+ DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_SUMMARIZATION])
DATA_SUMMARIZATION = DATA_SUMMARIZATION[DATA_SUMMARIZATION.iloc[:, 1:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL.fillna("", inplace=True)
- DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
+ DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL
@@ -1341,29 +1454,29 @@ def get_mteb_average_zh():
DATA_OVERALL_ZH = DATA_OVERALL_ZH.round(2)
- DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLASSIFICATION_ZH])
+ DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION_ZH])
# Only keep rows with at least one score in addition to the "Model" & rank column
- DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 4:].ne("").any(axis=1)]
- DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLUSTERING_ZH])
- DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING_ZH])
+ DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 4:].ne("").any(axis=1)]
- DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_ZH])
- DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION_ZH])
+ DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RERANKING_ZH])
- DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RERANKING_ZH])
+ DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RETRIEVAL_ZH])
- DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL_ZH])
+ DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 4:].ne("").any(axis=1)]
- DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_STS_ZH])
- DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS_ZH])
+ DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 4:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL_ZH.fillna("", inplace=True)
- DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]]
+ DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]]
DATA_OVERALL_ZH = DATA_OVERALL_ZH[DATA_OVERALL_ZH.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL_ZH
@@ -1401,31 +1514,31 @@ def get_mteb_average_fr():
DATA_OVERALL_FR.insert(0, "Rank", list(range(1, len(DATA_OVERALL_FR) + 1)))
DATA_OVERALL_FR = DATA_OVERALL_FR.round(2)
- DATA_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_CLASSIFICATION_FR])
- DATA_CLASSIFICATION_FR = DATA_CLASSIFICATION_FR[DATA_CLASSIFICATION_FR.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION_FR])
+ DATA_CLASSIFICATION_FR = DATA_CLASSIFICATION_FR[DATA_CLASSIFICATION_FR.iloc[:, 4:].ne("").any(axis=1)]
- DATA_CLUSTERING_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_CLUSTERING_FR])
- DATA_CLUSTERING_FR = DATA_CLUSTERING_FR[DATA_CLUSTERING_FR.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLUSTERING_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING_FR])
+ DATA_CLUSTERING_FR = DATA_CLUSTERING_FR[DATA_CLUSTERING_FR.iloc[:, 4:].ne("").any(axis=1)]
- DATA_PAIR_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_FR])
- DATA_PAIR_CLASSIFICATION_FR = DATA_PAIR_CLASSIFICATION_FR[DATA_PAIR_CLASSIFICATION_FR.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_PAIR_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION_FR])
+ DATA_PAIR_CLASSIFICATION_FR = DATA_PAIR_CLASSIFICATION_FR[DATA_PAIR_CLASSIFICATION_FR.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RERANKING_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_RERANKING_FR])
- DATA_RERANKING_FR = DATA_RERANKING_FR[DATA_RERANKING_FR.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RERANKING_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RERANKING_FR])
+ DATA_RERANKING_FR = DATA_RERANKING_FR[DATA_RERANKING_FR.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RETRIEVAL_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_RETRIEVAL_FR])
- DATA_RETRIEVAL_FR = DATA_RETRIEVAL_FR[DATA_RETRIEVAL_FR.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RETRIEVAL_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL_FR])
+ DATA_RETRIEVAL_FR = DATA_RETRIEVAL_FR[DATA_RETRIEVAL_FR.iloc[:, 4:].ne("").any(axis=1)]
- DATA_STS_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_STS_FR])
- DATA_STS_FR = DATA_STS_FR[DATA_STS_FR.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_STS_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS_FR])
+ DATA_STS_FR = DATA_STS_FR[DATA_STS_FR.iloc[:, 4:].ne("").any(axis=1)]
- DATA_SUMMARIZATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_SUMMARIZATION_FR])
+ DATA_SUMMARIZATION_FR = add_rank(DATA_OVERALL_FR[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_SUMMARIZATION_FR])
DATA_SUMMARIZATION_FR = DATA_SUMMARIZATION_FR[DATA_SUMMARIZATION_FR.iloc[:, 1:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL_FR.fillna("", inplace=True)
- DATA_OVERALL_FR = DATA_OVERALL_FR[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_FR)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_FR)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_FR)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_FR)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_FR)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_FR)} datasets)", f"STS Average ({len(TASK_LIST_STS_FR)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION_FR)} dataset)"]]
+ DATA_OVERALL_FR = DATA_OVERALL_FR[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_FR)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_FR)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_FR)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_FR)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_FR)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_FR)} datasets)", f"STS Average ({len(TASK_LIST_STS_FR)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION_FR)} dataset)"]]
DATA_OVERALL_FR = DATA_OVERALL_FR[DATA_OVERALL_FR.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL_FR
@@ -1460,26 +1573,26 @@ def get_mteb_average_pl():
DATA_OVERALL_PL = DATA_OVERALL_PL.round(2)
- DATA_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLASSIFICATION_PL])
+ DATA_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLASSIFICATION_PL])
# Only keep rows with at least one score in addition to the "Model" & rank column
- DATA_CLASSIFICATION_PL = DATA_CLASSIFICATION_PL[DATA_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLASSIFICATION_PL = DATA_CLASSIFICATION_PL[DATA_CLASSIFICATION_PL.iloc[:, 4:].ne("").any(axis=1)]
- DATA_CLUSTERING_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLUSTERING_PL])
- DATA_CLUSTERING_PL = DATA_CLUSTERING_PL[DATA_CLUSTERING_PL.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_CLUSTERING_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_CLUSTERING_PL])
+ DATA_CLUSTERING_PL = DATA_CLUSTERING_PL[DATA_CLUSTERING_PL.iloc[:, 4:].ne("").any(axis=1)]
- DATA_PAIR_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_PL])
- DATA_PAIR_CLASSIFICATION_PL = DATA_PAIR_CLASSIFICATION_PL[DATA_PAIR_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_PAIR_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_PAIR_CLASSIFICATION_PL])
+ DATA_PAIR_CLASSIFICATION_PL = DATA_PAIR_CLASSIFICATION_PL[DATA_PAIR_CLASSIFICATION_PL.iloc[:, 4:].ne("").any(axis=1)]
- DATA_RETRIEVAL_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_RETRIEVAL_PL])
- DATA_RETRIEVAL_PL = DATA_RETRIEVAL_PL[DATA_RETRIEVAL_PL.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_RETRIEVAL_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_RETRIEVAL_PL])
+ DATA_RETRIEVAL_PL = DATA_RETRIEVAL_PL[DATA_RETRIEVAL_PL.iloc[:, 4:].ne("").any(axis=1)]
- DATA_STS_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_STS_PL])
- DATA_STS_PL = DATA_STS_PL[DATA_STS_PL.iloc[:, 2:].ne("").any(axis=1)]
+ DATA_STS_PL = add_rank(DATA_OVERALL_PL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_STS_PL])
+ DATA_STS_PL = DATA_STS_PL[DATA_STS_PL.iloc[:, 4:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL_PL.fillna("", inplace=True)
- DATA_OVERALL_PL = DATA_OVERALL_PL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_PL)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", f"STS Average ({len(TASK_LIST_STS_PL)} datasets)"]]
+ DATA_OVERALL_PL = DATA_OVERALL_PL[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_PL)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", f"STS Average ({len(TASK_LIST_STS_PL)} datasets)"]]
DATA_OVERALL_PL = DATA_OVERALL_PL[DATA_OVERALL_PL.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL_PL
@@ -1488,16 +1601,15 @@ get_mteb_average()
get_mteb_average_fr()
get_mteb_average_pl()
get_mteb_average_zh()
-
-DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
-DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
-DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
-DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
-DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
-DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
-DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
-DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)
-DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)
+DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_BITEXT_MINING]
+DATA_BITEXT_MINING_DA = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_DA)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + TASK_LIST_BITEXT_MINING_DA]
+DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_DA]
+DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_NB]
+DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_SV]
+DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLASSIFICATION_OTHER]
+DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLUSTERING_DE]
+DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_STS_OTHER]
+DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_RETRIEVAL_LAW]
# Exact, add all non-nan integer values for every dataset
NUM_SCORES = 0
@@ -1506,7 +1618,7 @@ MODELS = []
# LANGUAGES = []
for d in [
DATA_BITEXT_MINING,
- DATA_BITEXT_MINING_OTHER,
+ DATA_BITEXT_MINING_DA,
DATA_CLASSIFICATION_EN,
DATA_CLASSIFICATION_DA,
DATA_CLASSIFICATION_FR,
@@ -1541,7 +1653,7 @@ for d in [
DATA_SUMMARIZATION_FR,
]:
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
- cols_to_ignore = 3 if "Average" in d.columns else 2
+ cols_to_ignore = 4 if "Average" in d.columns else 3
# Count number of scores including only non-nan floats & excluding the rank column
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
@@ -1556,6 +1668,7 @@ NUM_MODELS = len(set(MODELS))
# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
+# 4. Prevent checkbox groups from taking up too much space
css = """
table > thead {
white-space: normal
@@ -1568,807 +1681,498 @@ table {
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
+
+.filter-checkbox-group {
+ max-width: max-content;
+}
"""
-block = gr.Blocks(css=css)
-with block:
+"""
+Each inner tab can have the following keys:
+- language: The language of the leaderboard
+- language_long: [optional] The long form of the language
+- description: The description of the leaderboard
+- credits: [optional] The credits for the leaderboard
+- data: The data for the leaderboard
+- refresh: The function to refresh the leaderboard
+"""
+
+chinese_credits = "[FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)"
+french_credits = "[Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)"
+danish_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
+norwegian_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
+polish_credits = "[Rafaล Poลwiata](https://github.com/rafalposwiata)"
+
+data = {
+ "Overall": {
+ "metric": "Various, refer to task tabs",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Overall MTEB English leaderboard** ๐ฎ",
+ "data": DATA_OVERALL,
+ "refresh": get_mteb_average,
+ },
+ {
+ "language": "Chinese",
+ "data": DATA_OVERALL_ZH,
+ "description": "**Overall MTEB Chinese leaderboard (C-MTEB)** ๐ฎ๐จ๐ณ",
+ "credits": chinese_credits,
+ "refresh": get_mteb_average_zh,
+ },
+ {
+ "language": "French",
+ "data": DATA_OVERALL_FR,
+ "description": "**Overall MTEB French leaderboard (F-MTEB)** ๐ฎ๐ซ๐ท",
+ "credits": french_credits,
+ "refresh": get_mteb_average_fr,
+ },
+ {
+ "language": "Polish",
+ "data": DATA_OVERALL_PL,
+ "description": "**Overall MTEB Polish leaderboard** ๐ฎ๐ต๐ฑ",
+ "refresh": get_mteb_average_pl,
+ },
+ ]
+ },
+ "Bitext Mining": {
+ "metric": "[F1](https://huggingface.co./spaces/evaluate-metric/f1)",
+ "data": [
+ {
+ "language": "English-X",
+ "language_long": "117 (Pairs of: English & other language)",
+ "description": "**Bitext Mining English-X Leaderboard** ๐",
+ "data": DATA_BITEXT_MINING,
+ "refresh": partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
+ },
+ {
+ "language": "Danish",
+ "language_long": "Danish & Bornholmsk (Danish Dialect)",
+ "description": "**Bitext Mining Danish Leaderboard** ๐๐ฉ๐ฐ",
+ "credits": danish_credits,
+ "data": DATA_BITEXT_MINING_DA,
+ "refresh": partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_DA),
+ }
+ ]
+ },
+ "Classification": {
+ "metric": "[Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Classification English Leaderboard** โค๏ธ",
+ "data": DATA_CLASSIFICATION_EN,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], langs=["en"])
+ },
+ {
+ "language": "Chinese",
+ "description": "**Classification Chinese Leaderboard** ๐งก๐จ๐ณ",
+ "credits": chinese_credits,
+ "data": DATA_CLASSIFICATION_ZH,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH)
+ },
+ {
+ "language": "Danish",
+ "description": "**Classification Danish Leaderboard** ๐ค๐ฉ๐ฐ",
+ "credits": danish_credits,
+ "data": DATA_CLASSIFICATION_DA,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA)
+ },
+ {
+ "language": "French",
+ "description": "**Classification French Leaderboard** ๐๐ซ๐ท",
+ "credits": french_credits,
+ "data": DATA_CLASSIFICATION_FR,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR)
+ },
+ {
+ "language": "Norwegian",
+ "language_long": "Norwegian Bokmรฅl",
+ "description": "**Classification Norwegian Leaderboard** ๐๐ณ๐ด",
+ "credits": norwegian_credits,
+ "data": DATA_CLASSIFICATION_NB,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB)
+ },
+ {
+ "language": "Polish",
+ "description": "**Classification Polish Leaderboard** ๐ค๐ต๐ฑ",
+ "credits": polish_credits,
+ "data": DATA_CLASSIFICATION_PL,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL)
+ },
+ {
+ "language": "Swedish",
+ "description": "**Classification Swedish Leaderboard** ๐๐ธ๐ช",
+ "credits": norwegian_credits,
+ "data": DATA_CLASSIFICATION_SV,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV)
+ },
+ {
+ "language": "Other",
+ "language_long": "47 (Only languages not included in the other tabs)",
+ "description": "**Classification Other Languages Leaderboard** ๐๐๐",
+ "data": DATA_CLASSIFICATION_OTHER,
+ "refresh": partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER)
+ }
+ ]
+ },
+ "Clustering": {
+ "metric": "Validity Measure (v_measure)",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Clustering Leaderboard** โจ",
+ "data": DATA_CLUSTERING,
+ "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING)
+ },
+ {
+ "language": "Chinese",
+ "description": "**Clustering Chinese Leaderboard** โจ๐จ๐ณ",
+ "credits": chinese_credits,
+ "data": DATA_CLUSTERING_ZH,
+ "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH)
+ },
+ {
+ "language": "French",
+ "description": "**Clustering French Leaderboard** โจ๐ซ๐ท",
+ "credits": french_credits,
+ "data": DATA_CLUSTERING_FR,
+ "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR)
+ },
+ {
+ "language": "German",
+ "description": "**Clustering German Leaderboard** โจ๐ฉ๐ช",
+ "credits": "[Silvan](https://github.com/slvnwhrl)",
+ "data": DATA_CLUSTERING_DE,
+ "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE)
+ },
+ {
+ "language": "Polish",
+ "description": "**Clustering Polish Leaderboard** โจ๐ต๐ฑ",
+ "credits": polish_credits,
+ "data": DATA_CLUSTERING_PL,
+ "refresh": partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL)
+ },
+ ]
+ },
+ "Pair Classification": {
+ "metric": "Average Precision based on Cosine Similarities (cos_sim_ap)",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Pair Classification English Leaderboard** ๐ญ",
+ "data": DATA_PAIR_CLASSIFICATION,
+ "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION)
+ },
+ {
+ "language": "Chinese",
+ "description": "**Pair Classification Chinese Leaderboard** ๐ญ๐จ๐ณ",
+ "credits": chinese_credits,
+ "data": DATA_PAIR_CLASSIFICATION_ZH,
+ "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH)
+ },
+ {
+ "language": "French",
+ "description": "**Pair Classification French Leaderboard** ๐ญ๐ซ๐ท",
+ "credits": french_credits,
+ "data": DATA_PAIR_CLASSIFICATION_FR,
+ "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR)
+ },
+ {
+ "language": "Polish",
+ "description": "**Pair Classification Polish Leaderboard** ๐ญ๐ต๐ฑ",
+ "credits": polish_credits,
+ "data": DATA_PAIR_CLASSIFICATION_PL,
+ "refresh": partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL)
+ },
+ ]
+ },
+ "Reranking": {
+ "metric": "Mean Average Precision (MAP)",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Reranking English Leaderboard** ๐ฅ",
+ "data": DATA_RERANKING,
+ "refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING)
+ },
+ {
+ "language": "Chinese",
+ "description": "**Reranking Chinese Leaderboard** ๐ฅ๐จ๐ณ",
+ "credits": chinese_credits,
+ "data": DATA_RERANKING_ZH,
+ "refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH)
+ },
+ {
+ "language": "French",
+ "description": "**Reranking French Leaderboard** ๐ฅ๐ซ๐ท",
+ "credits": french_credits,
+ "data": DATA_RERANKING_FR,
+ "refresh": partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR)
+ }
+ ]
+ },
+ "Retrieval": {
+ "metric": "Normalized Discounted Cumulative Gain @ k (ndcg_at_10)",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Retrieval English Leaderboard** ๐",
+ "data": DATA_RETRIEVAL,
+ "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL)
+ },
+ {
+ "language": "Chinese",
+ "description": "**Retrieval Chinese Leaderboard** ๐๐จ๐ณ",
+ "credits": chinese_credits,
+ "data": DATA_RETRIEVAL_ZH,
+ "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH)
+ },
+ {
+ "language": "French",
+ "description": "**Retrieval French Leaderboard** ๐๐ซ๐ท",
+ "credits": french_credits,
+ "data": DATA_RETRIEVAL_FR,
+ "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR)
+ },
+ {
+ "language": "Law",
+ "language_long": "English, German, Chinese",
+ "description": "**Retrieval Law Leaderboard** ๐โ๏ธ",
+ "credits": "[Voyage AI](https://www.voyageai.com/)",
+ "data": DATA_RETRIEVAL_LAW,
+ "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_LAW)
+ },
+ {
+ "language": "Polish",
+ "description": "**Retrieval Polish Leaderboard** ๐๐ต๐ฑ",
+ "credits": polish_credits,
+ "data": DATA_RETRIEVAL_PL,
+ "refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL)
+ }
+ ]
+ },
+ "STS": {
+ "metric": "Spearman correlation based on cosine similarity",
+ "data": [
+ {
+ "language": "English",
+ "description": "**STS English Leaderboard** ๐ค",
+ "data": DATA_STS_EN,
+ "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS)
+ },
+ {
+ "language": "Chinese",
+ "description": "**STS Chinese Leaderboard** ๐ค๐จ๐ณ",
+ "credits": chinese_credits,
+ "data": DATA_STS_ZH,
+ "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH)
+ },
+ {
+ "language": "French",
+ "description": "**STS French Leaderboard** ๐ค๐ซ๐ท",
+ "credits": french_credits,
+ "data": DATA_STS_FR,
+ "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR)
+ },
+ {
+ "language": "Polish",
+ "description": "**STS Polish Leaderboard** ๐ค๐ต๐ฑ",
+ "credits": polish_credits,
+ "data": DATA_STS_PL,
+ "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL)
+ },
+ {
+ "language": "Other",
+ "language_long": "Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)",
+ "description": "**STS Other Leaderboard** ๐ฝ",
+ "data": DATA_STS_OTHER,
+ "refresh": partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER)
+ },
+ ]
+ },
+ "Summarization": {
+ "metric": "Spearman correlation based on cosine similarity",
+ "data": [
+ {
+ "language": "English",
+ "description": "**Summarization Leaderboard** ๐",
+ "data": DATA_SUMMARIZATION,
+ "refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION)
+ },
+ {
+ "language": "French",
+ "description": "**Summarization Leaderboard** ๐",
+ "credits": french_credits,
+ "data": DATA_SUMMARIZATION_FR,
+ "refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR)
+ }
+ ]
+ }
+}
+
+dataframes = []
+full_dataframes = []
+tabs = []
+
+# The following JavaScript function updates the URL parameters based on the selected task and language
+# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language
+# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects
+# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio
+set_window_url_params = """
+function(goalUrlObject) {
+ const params = new URLSearchParams(window.location.search);
+ for (const [key, value] of Object.entries(goalUrlObject)) {
+ params.set(key, value);
+ };
+ const queryString = '?' + params.toString();
+ console.log(queryString);
+ window.history.replaceState({}, '', queryString);
+ return [];
+}
+"""
+
+def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
+ current_task_language["task"] = event.target.id
+ # Either use the cached language for this task or the 1st language
+ current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id)
+ return current_task_language, language_per_task
+
+def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
+ current_task_language["language"] = event.target.id
+ if "task" not in current_task_language:
+ current_task_language["task"] = "overall"
+ language_per_task[current_task_language["task"]] = event.target.id
+ return current_task_language, language_per_task
+
+NUMERIC_INTERVALS = {
+ "<100M": pd.Interval(0, 100, closed="right"),
+ "100M to 250M": pd.Interval(100, 250, closed="right"),
+ "250M to 500M": pd.Interval(250, 500, closed="right"),
+ "500M to 1B": pd.Interval(500, 1000, closed="right"),
+ ">1B": pd.Interval(1000, 1_000_000, closed="right"),
+}
+
+MODEL_TYPES = [
+ "Open",
+ "Proprietary",
+ "Sentence Transformers",
+]
+
+def filter_data(search_query, model_types, model_sizes, *full_dataframes):
+ output_dataframes = []
+ for df in full_dataframes:
+ # Apply the search query
+ if search_query:
+ names = df["Model"].map(lambda x: re.match("(.+)", x).group(1))
+ masks = []
+ for query in search_query.split(";"):
+ masks.append(names.str.contains(query))
+ df = df[reduce(lambda a, b: a | b, masks)]
+
+ # Apply the model type filtering
+ if set(model_types) != set(MODEL_TYPES):
+ masks = []
+ for model_type in model_types:
+ if model_type == "Open":
+ masks.append(~df["Model"].isin(PROPRIETARY_MODELS))
+ elif model_type == "Proprietary":
+ masks.append(df["Model"].isin(PROPRIETARY_MODELS))
+ elif model_type == "Sentence Transformers":
+ masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS))
+ if masks:
+ df = df[reduce(lambda a, b: a | b, masks)]
+ else:
+ df = pd.DataFrame(columns=df.columns)
+
+ # Apply the model size filtering
+ if set(model_sizes) != set(NUMERIC_INTERVALS.keys()):
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
+ sizes = df["Model Size (Million Parameters)"].replace('', 0)
+ mask = sizes.apply(lambda size: any(numeric_interval.contains(size)))
+ df = df[mask]
+
+ output_dataframes.append(df)
+ return output_dataframes
+
+with gr.Blocks(css=css) as block:
+
+ # Store the current task and language for updating the URL. This is a bit hacky, but it works
+ # for passing the current task and language to the JavaScript function via Gradio
+ current_task_language = gr.JSON(value=dict(), visible=False)
+ language_per_task = gr.JSON(value=dict(), visible=False)
+
gr.Markdown(f"""
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the MTEB GitHub repository ๐ค Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
""")
- with gr.Tabs():
- with gr.TabItem("Overall"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Overall MTEB English leaderboard** ๐ฎ
-
- - **Metric:** Various, refer to task tabs
- - **Languages:** English
- """)
- with gr.Row():
- data_overall = gr.components.Dataframe(
- DATA_OVERALL,
- datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL.columns),
- type="pandas",
- height=600,
- )
- with gr.Row():
- data_run_overall = gr.Button("Refresh")
- data_run_overall.click(get_mteb_average, inputs=None, outputs=data_overall)
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **Overall MTEB Chinese leaderboard (C-MTEB)** ๐ฎ๐จ๐ณ
-
- - **Metric:** Various, refer to task tabs
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_overall_zh = gr.components.Dataframe(
- DATA_OVERALL_ZH,
- datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_ZH.columns),
- type="pandas",
- height=600,
- )
- with gr.Row():
- data_run_overall_zh = gr.Button("Refresh")
- data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Overall MTEB French leaderboard (F-MTEB)** ๐ฎ๐ซ๐ท
-
- - **Metric:** Various, refer to task tabs
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_overall_fr = gr.components.Dataframe(
- DATA_OVERALL_FR,
- datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_FR.columns),
- type="pandas",
- height=600,
- )
- with gr.Row():
- data_overall_fr = gr.Button("Refresh")
- data_overall_fr.click(get_mteb_average_fr, inputs=None, outputs=data_overall_fr)
- with gr.TabItem("Polish"):
- with gr.Row():
- gr.Markdown("""
- **Overall MTEB Polish leaderboard (PL-MTEB)** ๐ฎ๐ต๐ฑ
-
- - **Metric:** Various, refer to task tabs
- - **Languages:** Polish
- - **Credits:** [Rafaล Poลwiata](https://github.com/rafalposwiata), [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
- """)
- with gr.Row():
- data_overall_pl = gr.components.Dataframe(
- DATA_OVERALL_PL,
- datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_PL.columns),
- type="pandas",
- height=600,
- )
- with gr.Row():
- data_run_overall_pl = gr.Button("Refresh")
- data_run_overall_pl.click(get_mteb_average_pl, inputs=None, outputs=data_overall_pl)
- with gr.TabItem("Bitext Mining"):
- with gr.TabItem("English-X"):
- with gr.Row():
- gr.Markdown("""
- **Bitext Mining English-X Leaderboard** ๐
-
- - **Metric:** [F1](https://huggingface.co./spaces/evaluate-metric/f1)
- - **Languages:** 117 (Pairs of: English & other language)
- """)
- with gr.Row():
- data_bitext_mining = gr.components.Dataframe(
- DATA_BITEXT_MINING,
- datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_bitext_mining = gr.Button("Refresh")
- data_run_bitext_mining.click(
- partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
- outputs=data_bitext_mining,
- )
- with gr.TabItem("Danish"):
- with gr.Row():
- gr.Markdown("""
- **Bitext Mining Danish Leaderboard** ๐๐ฉ๐ฐ
-
- - **Metric:** [F1](https://huggingface.co./spaces/evaluate-metric/f1)
- - **Languages:** Danish & Bornholmsk (Danish Dialect)
- - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
- """)
- with gr.Row():
- data_bitext_mining_da = gr.components.Dataframe(
- DATA_BITEXT_MINING_OTHER,
- datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING_OTHER.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_bitext_mining_da = gr.Button("Refresh")
- data_run_bitext_mining_da.click(
- partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING_OTHER),
- outputs=data_bitext_mining_da,
- )
- with gr.TabItem("Classification"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Classification English Leaderboard** โค๏ธ
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** English
- """)
- with gr.Row():
- data_classification_en = gr.components.Dataframe(
- DATA_CLASSIFICATION_EN,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_en = gr.Button("Refresh")
- data_run_classification_en.click(
- partial(get_mteb_data, tasks=["Classification"], langs=["en"]),
- outputs=data_classification_en,
- )
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **Classification Chinese Leaderboard** ๐งก๐จ๐ณ
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_classification_zh = gr.components.Dataframe(
- DATA_CLASSIFICATION_ZH,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_zh = gr.Button("Refresh")
- data_run_classification_zh.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH),
- outputs=data_classification_zh,
- )
- with gr.TabItem("Danish"):
- with gr.Row():
- gr.Markdown("""
- **Classification Danish Leaderboard** ๐ค๐ฉ๐ฐ
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** Danish
- - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
- """)
- with gr.Row():
- data_classification_da = gr.components.Dataframe(
- DATA_CLASSIFICATION_DA,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_da = gr.Button("Refresh")
- data_run_classification_da.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA),
- outputs=data_run_classification_da,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Classification French Leaderboard** ๐๐ซ๐ท
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_classification_fr = gr.components.Dataframe(
- DATA_CLASSIFICATION_FR,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_FR.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_fr = gr.Button("Refresh")
- data_run_classification_fr.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR),
- outputs=data_run_classification_fr,
- )
- with gr.TabItem("Norwegian"):
- with gr.Row():
- gr.Markdown("""
- **Classification Norwegian Leaderboard** ๐๐ณ๐ด
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** Norwegian Bokmรฅl
- - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
- """)
- with gr.Row():
- data_classification_nb = gr.components.Dataframe(
- DATA_CLASSIFICATION_NB,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_nb = gr.Button("Refresh")
- data_run_classification_nb.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB),
- outputs=data_classification_nb,
- )
- with gr.TabItem("Polish"):
- with gr.Row():
- gr.Markdown("""
- **Classification Polish Leaderboard** ๐ค๐ต๐ฑ
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** Polish
- - **Credits:** [Rafaล Poลwiata](https://github.com/rafalposwiata)
- """)
- with gr.Row():
- data_classification_pl = gr.components.Dataframe(
- DATA_CLASSIFICATION_PL,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_PL.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_pl = gr.Button("Refresh")
- data_run_classification_pl.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL),
- outputs=data_classification_pl,
- )
- with gr.TabItem("Swedish"):
- with gr.Row():
- gr.Markdown("""
- **Classification Swedish Leaderboard** ๐๐ธ๐ช
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** Swedish
- - **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
- """)
- with gr.Row():
- data_classification_sv = gr.components.Dataframe(
- DATA_CLASSIFICATION_SV,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_classification_sv = gr.Button("Refresh")
- data_run_classification_sv.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV),
- outputs=data_classification_sv,
- )
- with gr.TabItem("Other"):
- with gr.Row():
- gr.Markdown("""
- **Classification Other Languages Leaderboard** ๐๐๐
-
- - **Metric:** [Accuracy](https://huggingface.co./spaces/evaluate-metric/accuracy)
- - **Languages:** 47 (Only languages not included in the other tabs)
- """)
- with gr.Row():
- data_classification = gr.components.Dataframe(
- DATA_CLASSIFICATION_OTHER,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10,
- type="pandas",
- )
- with gr.Row():
- data_run_classification = gr.Button("Refresh")
- data_run_classification.click(
- partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER),
- outputs=data_classification,
- )
- with gr.TabItem("Clustering"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Clustering Leaderboard** โจ
-
- - **Metric:** Validity Measure (v_measure)
- - **Languages:** English
- """)
- with gr.Row():
- data_clustering = gr.components.Dataframe(
- DATA_CLUSTERING,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_clustering_en = gr.Button("Refresh")
- data_run_clustering_en.click(
- partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING),
- outputs=data_clustering,
- )
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **Clustering Chinese Leaderboard** โจ๐จ๐ณ
-
- - **Metric:** Validity Measure (v_measure)
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_clustering_zh = gr.components.Dataframe(
- DATA_CLUSTERING_ZH,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_clustering_zh = gr.Button("Refresh")
- data_run_clustering_zh.click(
- partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH),
- outputs=data_clustering_zh,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Clustering French Leaderboard** โจ๐ซ๐ท
-
- - **Metric:** Validity Measure (v_measure)
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_clustering_fr = gr.components.Dataframe(
- DATA_CLUSTERING_FR,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_FR.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_clustering_fr = gr.Button("Refresh")
- data_run_clustering_fr.click(
- partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR),
- outputs=data_clustering_fr,
- )
- with gr.TabItem("German"):
- with gr.Row():
- gr.Markdown("""
- **Clustering German Leaderboard** โจ๐ฉ๐ช
-
- - **Metric:** Validity Measure (v_measure)
- - **Languages:** German
- - **Credits:** [Silvan](https://github.com/slvnwhrl)
- """)
- with gr.Row():
- data_clustering_de = gr.components.Dataframe(
- DATA_CLUSTERING_DE,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_clustering_de = gr.Button("Refresh")
- data_run_clustering_de.click(
- partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE),
- outputs=data_clustering_de,
- )
- with gr.TabItem("Polish"):
- with gr.Row():
- gr.Markdown("""
- **Clustering Polish Leaderboard** โจ๐ต๐ฑ
-
- - **Metric:** Validity Measure (v_measure)
- - **Languages:** Polish
- - **Credits:** [Rafaล Poลwiata](https://github.com/rafalposwiata)
- """)
- with gr.Row():
- data_clustering_pl = gr.components.Dataframe(
- DATA_CLUSTERING_PL,
- datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_PL.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_clustering_pl = gr.Button("Refresh")
- data_run_clustering_pl.click(
- partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL),
- outputs=data_clustering_pl,
- )
- with gr.TabItem("Pair Classification"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Pair Classification English Leaderboard** ๐ญ
-
- - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
- - **Languages:** English
- """)
- with gr.Row():
- data_pair_classification = gr.components.Dataframe(
- DATA_PAIR_CLASSIFICATION,
- datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_pair_classification = gr.Button("Refresh")
- data_run_pair_classification.click(
- partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION),
- outputs=data_pair_classification,
- )
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **Pair Classification Chinese Leaderboard** ๐ญ๐จ๐ณ
-
- - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_pair_classification_zh = gr.components.Dataframe(
- DATA_PAIR_CLASSIFICATION_ZH,
- datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_pair_classification_zh = gr.Button("Refresh")
- data_run_pair_classification_zh.click(
- partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH),
- outputs=data_pair_classification_zh,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Pair Classification French Leaderboard** ๐ญ๐ซ๐ท
-
- - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_pair_classification_fr = gr.components.Dataframe(
- DATA_PAIR_CLASSIFICATION_FR,
- datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_FR.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_pair_classification_fr = gr.Button("Refresh")
- data_run_pair_classification_fr.click(
- partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR),
- outputs=data_pair_classification_fr,
- )
- with gr.TabItem("Polish"):
- with gr.Row():
- gr.Markdown("""
- **Pair Classification Polish Leaderboard** ๐ญ๐ต๐ฑ
-
- - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
- - **Languages:** Polish
- - **Credits:** [Rafaล Poลwiata](https://github.com/rafalposwiata)
- """)
- with gr.Row():
- data_pair_classification_pl = gr.components.Dataframe(
- DATA_PAIR_CLASSIFICATION_PL,
- datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_PL.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_pair_classification_pl = gr.Button("Refresh")
- data_run_pair_classification_pl.click(
- partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL),
- outputs=data_pair_classification_pl,
- )
- with gr.TabItem("Reranking"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Reranking English Leaderboard** ๐ฅ
-
- - **Metric:** Mean Average Precision (MAP)
- - **Languages:** English
- """)
- with gr.Row():
- data_reranking = gr.components.Dataframe(
- DATA_RERANKING,
- datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_reranking = gr.Button("Refresh")
- data_run_reranking.click(
- partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING),
- outputs=data_reranking,
- )
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **Reranking Chinese Leaderboard** ๐ฅ๐จ๐ณ
-
- - **Metric:** Mean Average Precision (MAP)
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_reranking_zh = gr.components.Dataframe(
- DATA_RERANKING_ZH,
- datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_reranking_zh = gr.Button("Refresh")
- data_run_reranking_zh.click(
- partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH),
- outputs=data_reranking_zh,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Reranking French Leaderboard** ๐ฅ๐ซ๐ท
-
- - **Metric:** Mean Average Precision (MAP)
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_reranking_fr = gr.components.Dataframe(
- DATA_RERANKING_FR,
- datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_FR.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_reranking_fr = gr.Button("Refresh")
- data_run_reranking_fr.click(
- partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR),
- outputs=data_reranking_fr,
- )
- with gr.TabItem("Retrieval"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Retrieval English Leaderboard** ๐
-
- - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
- - **Languages:** English
- """)
- with gr.Row():
- data_retrieval = gr.components.Dataframe(
- DATA_RETRIEVAL,
- # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
- datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_retrieval = gr.Button("Refresh")
- data_run_retrieval.click(
- partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL),
- outputs=data_retrieval,
- )
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **Retrieval Chinese Leaderboard** ๐๐จ๐ณ
-
- - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_retrieval_zh = gr.components.Dataframe(
- DATA_RETRIEVAL_ZH,
- # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
- datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_retrieval_zh = gr.Button("Refresh")
- data_run_retrieval_zh.click(
- partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH),
- outputs=data_retrieval_zh,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Retrieval French Leaderboard** ๐๐ซ๐ท
-
- - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_retrieval_fr = gr.components.Dataframe(
- DATA_RETRIEVAL_FR,
- # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
- datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_FR.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_retrieval_fr = gr.Button("Refresh")
- data_run_retrieval_fr.click(
- partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR),
- outputs=data_retrieval_fr,
- )
- with gr.TabItem("Law"):
- with gr.Row():
- gr.Markdown("""
- **Retrieval Law Leaderboard** ๐โ๏ธ
-
- - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
- - **Languages:** English, German, Chinese
- - **Credits:** [Voyage AI](https://www.voyageai.com/)
- """)
- with gr.Row():
- data_retrieval_law = gr.components.Dataframe(
- DATA_RETRIEVAL_LAW,
- # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
- datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_LAW.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_retrieval_law = gr.Button("Refresh")
- data_run_retrieval_law.click(
- partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_LAW),
- outputs=data_retrieval_law,
- )
- with gr.TabItem("Polish"):
- with gr.Row():
- gr.Markdown("""
- **Retrieval Polish Leaderboard** ๐๐ต๐ฑ
-
- - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
- - **Languages:** Polish
- - **Credits:** [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
- """)
- with gr.Row():
- data_retrieval_pl = gr.components.Dataframe(
- DATA_RETRIEVAL_PL,
- # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
- datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_PL.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_retrieval_pl = gr.Button("Refresh")
- data_run_retrieval_pl.click(
- partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL),
- outputs=data_retrieval_pl,
- )
- with gr.TabItem("STS"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **STS English Leaderboard** ๐ค
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** English
- """)
- with gr.Row():
- data_sts_en = gr.components.Dataframe(
- DATA_STS_EN,
- datatype=["number", "markdown"] + ["number"] * len(DATA_STS_EN.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_sts_en = gr.Button("Refresh")
- data_run_sts_en.click(
- partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS),
- outputs=data_sts_en,
- )
- with gr.TabItem("Chinese"):
- with gr.Row():
- gr.Markdown("""
- **STS Chinese Leaderboard** ๐ค๐จ๐ณ
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** Chinese
- - **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
- """)
- with gr.Row():
- data_sts_zh = gr.components.Dataframe(
- DATA_STS_ZH,
- datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_sts_zh = gr.Button("Refresh")
- data_run_sts_zh.click(
- partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH),
- outputs=data_sts_zh,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **STS French Leaderboard** ๐ค๐ซ๐ท
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_sts_fr = gr.components.Dataframe(
- DATA_STS_FR,
- datatype=["number", "markdown"] + ["number"] * len(DATA_STS_FR.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_sts_fr = gr.Button("Refresh")
- data_run_sts_fr.click(
- partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR),
- outputs=data_sts_fr,
- )
- with gr.TabItem("Polish"):
- with gr.Row():
- gr.Markdown("""
- **STS Polish Leaderboard** ๐ค๐ต๐ฑ
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** Polish
- - **Credits:** [Rafaล Poลwiata](https://github.com/rafalposwiata)
- """)
- with gr.Row():
- data_sts_pl = gr.components.Dataframe(
- DATA_STS_PL,
- datatype=["number", "markdown"] + ["number"] * len(DATA_STS_PL.columns),
- type="pandas",
- )
- with gr.Row():
- data_run_sts_pl = gr.Button("Refresh")
- data_run_sts_pl.click(
- partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL),
- outputs=data_sts_pl,
- )
- with gr.TabItem("Other"):
- with gr.Row():
- gr.Markdown("""
- **STS Other Leaderboard** ๐ฝ
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)
- """)
- with gr.Row():
- data_sts_other = gr.components.Dataframe(
- DATA_STS_OTHER,
- datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_sts_other = gr.Button("Refresh")
- data_run_sts_other.click(
- partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER),
- outputs=data_sts_other,
- )
- with gr.TabItem("Summarization"):
- with gr.TabItem("English"):
- with gr.Row():
- gr.Markdown("""
- **Summarization Leaderboard** ๐
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** English
- """)
- with gr.Row():
- data_summarization = gr.components.Dataframe(
- DATA_SUMMARIZATION,
- datatype=["number", "markdown"] + ["number"] * 2,
- type="pandas",
- )
- with gr.Row():
- data_run = gr.Button("Refresh")
- data_run.click(
- partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION),
- outputs=data_summarization,
- )
- with gr.TabItem("French"):
- with gr.Row():
- gr.Markdown("""
- **Summarization Leaderboard** ๐
-
- - **Metric:** Spearman correlation based on cosine similarity
- - **Languages:** French
- - **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)
- """)
- with gr.Row():
- data_summarization_fr = gr.components.Dataframe(
- DATA_SUMMARIZATION_FR,
- datatype=["number", "markdown"] + ["number"] * 2,
- type="pandas",
- )
- with gr.Row():
- data_run_summarization_fr = gr.Button("Refresh")
- data_run_summarization_fr.click(
- partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR),
- outputs=data_run_summarization_fr,
- )
+
+ with gr.Row():
+ search_bar = gr.Textbox(
+ label="Search Bar (separate multiple queries with `;`)",
+ placeholder=" ๐ Search for a model and press enter...",
+ )
+ filter_model_type = gr.CheckboxGroup(
+ label="Model types",
+ choices=MODEL_TYPES,
+ value=MODEL_TYPES,
+ interactive=True,
+ elem_classes=["filter-checkbox-group"]
+ )
+ filter_model_sizes = gr.CheckboxGroup(
+ label="Model sizes (in number of parameters)",
+ choices=list(NUMERIC_INTERVALS.keys()),
+ value=list(NUMERIC_INTERVALS.keys()),
+ interactive=True,
+ elem_classes=["filter-checkbox-group"],
+ scale=2,
+ )
+
+ with gr.Tabs() as outer_tabs:
+ # Store the tabs for updating them on load based on URL parameters
+ tabs.append(outer_tabs)
+
+ for task, task_values in data.items():
+ metric = task_values["metric"]
+ task_tab_id = task.lower().replace(" ", "-")
+
+ # Overall, Bitext Mining, Classification, etc.
+ with gr.Tab(task, id=task_tab_id) as task_tab:
+ # For updating the 'task' in the URL
+ task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
+
+ with gr.Tabs() as task_tabs:
+ # Store the task tabs for updating them on load based on URL parameters
+ tabs.append(task_tabs)
+
+ for item in task_values["data"]:
+ item_tab_id = item["language"].lower().replace(" ", "-")
+
+ # English, Chinese, French, etc.
+ with gr.Tab(item["language"], id=item_tab_id) as item_tab:
+ # For updating the 'language' in the URL
+ item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params)
+
+ with gr.Row():
+ gr.Markdown(f"""
+ {item['description']}
+
+ - **Metric:** {metric}
+ - **Languages:** {item['language_long'] if 'language_long' in item else item['language']}
+ {"- **Credits:** " + item['credits'] if "credits" in item else ''}
+ """)
+
+ with gr.Row():
+ datatype = ["number", "markdown"] + ["number"] * len(item["data"])
+ dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500)
+ dataframes.append(dataframe)
+
+ full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
+ full_dataframes.append(full_dataframe)
+
+ with gr.Row():
+ refresh_button = gr.Button("Refresh")
+ refresh_button.click(item["refresh"], inputs=None, outputs=dataframe)
+
gr.Markdown(f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 113
@@ -2389,16 +2193,35 @@ with block:
}
```
""")
- # Running the functions on page load in addition to when the button is clicked
- # This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab
- """
- block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
- """
+
+ def set_tabs_on_load(request: gr.Request):
+ """Set the selected tab based on the URL parameters on load."""
+ global tabs
+ valid_task_keys = [child.id for child in tabs[0].children]
+ return_tabs = [gr.Tabs()] * len(tabs)
+
+ query_params = request.request.query_params
+ task_key = query_params.get("task", "overall")
+ if task_key not in valid_task_keys:
+ task_key = "overall"
+ return_tabs[0] = gr.Tabs(selected=task_key)
+
+ tabs_idx = valid_task_keys.index(task_key) + 1
+ language_key = query_params.get("language", "english")
+ return_tabs[tabs_idx] = gr.Tabs(selected=language_key)
+ current_task_language = {"task": task_key, "language": language_key}
+ language_per_task = {task_key: language_key}
+ return return_tabs + [current_task_language, language_per_task]
+
+ block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task])
+
+ search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
+ filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
+ filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
block.queue(max_size=10)
block.launch()
-
# Possible changes:
# Could add graphs / other visual content
# Could add verification marks