import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection from PIL import Image, ImageDraw # Load pre-trained model and image processor model_name = "facebook/detr-resnet-50" model = DetrForObjectDetection.from_pretrained(model_name) processor = DetrImageProcessor.from_pretrained(model_name) # Define function for object detection def detect_objects(image): inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # Get predictions target_sizes = [image.size[::-1]] # (height, width) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Draw bounding boxes on the image draw = ImageDraw.Draw(image) for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] draw.rectangle(box, outline="red", width=3) label_name = model.config.id2label[label.item()] draw.text((box[0], box[1]), f"{label_name} ({score:.2f})", fill="red") return image # Create Gradio interface interface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="Object Detection App", description="Upload an image to detect objects using the DETR model." ) # Launch the app if __name__ == "__main__": interface.launch()