File size: 2,462 Bytes
e96a816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from typing import List, Optional

import torch
import torch.nn.functional as F
from whisper.audio import N_FRAMES, N_MELS, log_mel_spectrogram, pad_or_trim
from whisper.model import Whisper
from whisper.tokenizer import Tokenizer


@torch.no_grad()
def calculate_audio_features(audio_path: Optional[str], model: Whisper) -> torch.Tensor:
    if audio_path is None:
        segment = torch.zeros((N_MELS, N_FRAMES), dtype=torch.float32).to(model.device)
    else:
        mel = log_mel_spectrogram(audio_path)
        segment = pad_or_trim(mel, N_FRAMES).to(model.device)
    return model.embed_audio(segment.unsqueeze(0))


@torch.no_grad()
def calculate_average_logprobs(
    model: Whisper,
    audio_features: torch.Tensor,
    class_names: List[str],
    tokenizer: Tokenizer,
) -> torch.Tensor:
    initial_tokens = (
        torch.tensor(tokenizer.sot_sequence_including_notimestamps).unsqueeze(0).to(model.device)
    )
    eot_token = torch.tensor([tokenizer.eot]).unsqueeze(0).to(model.device)

    average_logprobs = torch.zeros(len(class_names))
    for i, class_name in enumerate(class_names):
        class_name_tokens = (
            torch.tensor(tokenizer.encode(" " + class_name)).unsqueeze(0).to(model.device)
        )
        input_tokens = torch.cat([initial_tokens, class_name_tokens, eot_token], dim=1)

        logits = model.logits(input_tokens, audio_features)  # (1, T, V)
        logprobs = F.log_softmax(logits, dim=-1).squeeze(0)  # (T, V)
        logprobs = logprobs[len(tokenizer.sot_sequence_including_notimestamps) - 1 : -1]  # (T', V)
        logprobs = torch.gather(logprobs, dim=-1, index=class_name_tokens.view(-1, 1))  # (T', 1)
        average_logprob = logprobs.mean().item()
        average_logprobs[i] = average_logprob

    return average_logprobs


def calculate_internal_lm_average_logprobs(
    model: Whisper,
    class_names: List[str],
    tokenizer: Tokenizer,
    verbose: bool = False,
) -> torch.Tensor:
    audio_features_from_empty_input = calculate_audio_features(None, model)
    average_logprobs = calculate_average_logprobs(
        model=model,
        audio_features=audio_features_from_empty_input,
        class_names=class_names,
        tokenizer=tokenizer,
    )
    if verbose:
        print("Internal LM average log probabilities for each class:")
        for i, class_name in enumerate(class_names):
            print(f"  {class_name}: {average_logprobs[i]:.3f}")
    return average_logprobs