Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
from PyPDF2 import PdfReader
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
from gtts import gTTS
|
5 |
-
from io import BytesIO
|
6 |
import re
|
7 |
|
8 |
model_name = "ArtifactAI/led_large_16384_arxiv_summarization"
|
@@ -10,49 +9,42 @@ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
def extract_first_sentence(text):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
return sentences[0]
|
19 |
-
else:
|
20 |
-
return text
|
21 |
|
22 |
def summarize_pdf_abstract(pdf_file):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return summary_sentence, speech_bytes
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
raise Exception(str(e))
|
51 |
|
52 |
interface = gr.Interface(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
)
|
57 |
|
58 |
interface.launch(share=True)
|
|
|
2 |
from PyPDF2 import PdfReader
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
from gtts import gTTS
|
|
|
5 |
import re
|
6 |
|
7 |
model_name = "ArtifactAI/led_large_16384_arxiv_summarization"
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
def extract_first_sentence(text):
|
12 |
+
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
|
13 |
+
if sentences:
|
14 |
+
return sentences[0]
|
15 |
+
else:
|
16 |
+
return text
|
|
|
|
|
|
|
17 |
|
18 |
def summarize_pdf_abstract(pdf_file):
|
19 |
+
try:
|
20 |
+
reader = PdfReader(pdf_file)
|
21 |
+
abstract_text = ""
|
22 |
+
for page in reader.pages:
|
23 |
+
if "Abstract" in page.extract_text() or "Introduction" in page.extract_text():
|
24 |
+
abstract_text = page.extract_text()
|
25 |
+
break
|
26 |
+
|
27 |
+
inputs = tokenizer(abstract_text, return_tensors="pt")
|
28 |
+
outputs = model.generate(**inputs)
|
29 |
+
summary = tokenizer.decode(outputs[0])
|
30 |
+
|
31 |
+
# Extract only the first sentence
|
32 |
+
summary_sentence = extract_first_sentence(summary)
|
33 |
+
|
34 |
+
# Generate audio
|
35 |
+
speech = gTTS(text=summary_sentence, lang="en")
|
36 |
+
speech_bytes = speech.save_to_fp(BytesIO())
|
37 |
+
|
38 |
+
# Return individual output values
|
39 |
+
return summary_sentence, speech_bytes.getvalue()
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
raise Exception(str(e))
|
|
|
|
|
|
|
|
|
43 |
|
44 |
interface = gr.Interface(
|
45 |
+
fn=summarize_pdf_abstract,
|
46 |
+
inputs=[gr.File(label="Upload PDF")],
|
47 |
+
outputs=[gr.Textbox(label="Summary"), gr.Audio()],
|
48 |
)
|
49 |
|
50 |
interface.launch(share=True)
|