Spaces:
Runtime error
Runtime error
import os | |
import subprocess | |
import locale | |
locale.getpreferredencoding = lambda: "UTF-8" | |
# def download(lang, tgt_dir="./"): | |
# lang_fn, lang_dir = os.path.join(tgt_dir, lang+'.tar.gz'), os.path.join(tgt_dir, lang) | |
# cmd = ";".join([ | |
# f"wget https://dl.fbaipublicfiles.com/mms/tts/{lang}.tar.gz -O {lang_fn}", | |
# f"tar zxvf {lang_fn}" | |
# ]) | |
# print(f"Download model for language: {lang}") | |
# subprocess.check_output(cmd, shell=True) | |
# print(f"Model checkpoints in {lang_dir}: {os.listdir(lang_dir)}") | |
# return lang_dir | |
LANG = "spa" | |
ckpt_dir = "/workspaces/text_to_speach/spa"#download(LANG) | |
import os | |
import sys | |
# Add the path of the 'another_folder' to sys.path | |
import sys | |
# caution: path[0] is reserved for script path (or '' in REPL) | |
sys.path.insert(1, '/workspaces/text_to_speach/vits') | |
import re | |
import glob | |
import json | |
import tempfile | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
import numpy as np | |
import commons | |
import utils | |
import argparse | |
import subprocess | |
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate | |
from models import SynthesizerTrn | |
from scipy.io.wavfile import write | |
def preprocess_char(text, lang=None): | |
""" | |
Special treatement of characters in certain languages | |
""" | |
print(lang) | |
if lang == 'ron': | |
text = text.replace("ț", "ţ") | |
return text | |
class TextMapper(object): | |
def __init__(self, vocab_file): | |
self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()] | |
self.SPACE_ID = self.symbols.index(" ") | |
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} | |
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)} | |
def text_to_sequence(self, text, cleaner_names): | |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. | |
Args: | |
text: string to convert to a sequence | |
cleaner_names: names of the cleaner functions to run the text through | |
Returns: | |
List of integers corresponding to the symbols in the text | |
''' | |
sequence = [] | |
clean_text = text.strip() | |
for symbol in clean_text: | |
symbol_id = self._symbol_to_id[symbol] | |
sequence += [symbol_id] | |
return sequence | |
def uromanize(self, text, uroman_pl): | |
iso = "xxx" | |
with tempfile.NamedTemporaryFile() as tf, \ | |
tempfile.NamedTemporaryFile() as tf2: | |
with open(tf.name, "w") as f: | |
f.write("\n".join([text])) | |
cmd = f"perl " + uroman_pl | |
cmd += f" -l {iso} " | |
cmd += f" < {tf.name} > {tf2.name}" | |
os.system(cmd) | |
outtexts = [] | |
with open(tf2.name) as f: | |
for line in f: | |
line = re.sub(r"\s+", " ", line).strip() | |
outtexts.append(line) | |
outtext = outtexts[0] | |
return outtext | |
def get_text(self, text, hps): | |
text_norm = self.text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def filter_oov(self, text): | |
val_chars = self._symbol_to_id | |
txt_filt = "".join(list(filter(lambda x: x in val_chars, text))) | |
print(f"text after filtering OOV: {txt_filt}") | |
return txt_filt | |
def preprocess_text(txt, text_mapper, hps, uroman_dir=None, lang=None): | |
txt = preprocess_char(txt, lang=lang) | |
is_uroman = hps.data.training_files.split('.')[-1] == 'uroman' | |
if is_uroman: | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
if uroman_dir is None: | |
cmd = f"git clone [email protected]:isi-nlp/uroman.git {tmp_dir}" | |
print(cmd) | |
subprocess.check_output(cmd, shell=True) | |
uroman_dir = tmp_dir | |
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl") | |
print(f"uromanize") | |
txt = text_mapper.uromanize(txt, uroman_pl) | |
print(f"uroman text: {txt}") | |
txt = txt.lower() | |
txt = text_mapper.filter_oov(txt) | |
return txt | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
print(f"Run inference with {device}") | |
vocab_file = f"{ckpt_dir}/vocab.txt" | |
config_file = f"{ckpt_dir}/config.json" | |
assert os.path.isfile(config_file), f"{config_file} doesn't exist" | |
hps = utils.get_hparams_from_file(config_file) | |
text_mapper = TextMapper(vocab_file) | |
net_g = SynthesizerTrn( | |
len(text_mapper.symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
net_g.to(device) | |
_ = net_g.eval() | |
g_pth = f"{ckpt_dir}/G_100000.pth" | |
print(f"load {g_pth}") | |
_ = utils.load_checkpoint(g_pth, net_g, None) | |
def generate_audio_mms(text): | |
txt = preprocess_text(text, text_mapper, hps, lang=LANG) | |
stn_tst = text_mapper.get_text(txt, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(device) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) | |
hyp = net_g.infer( | |
x_tst, x_tst_lengths, noise_scale=.667, | |
noise_scale_w=0.8, length_scale=1.0 | |
)[0][0,0].cpu().float().numpy() | |
return hps.data.sampling_rate, hyp | |