mrfakename's picture
Super-squash branch 'main' using huggingface_hub
a00f7c2 verified
ABOUT = """
# Fast Whisper Turbo ⚡
Ultra-fast Whisper V3 Turbo inference, with enhancements sourced from [insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper).
"""
CREDITS = """
## Credits
This project was made possible through the work of several other projects:
- [insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper)
"""
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
) # https://huggingface.co./spaces/zero-gpu-explorers/README/discussions/75#666e4681303f0a5d67175a90
import gradio as gr
from transformers import pipeline
import torch
import spaces
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device="cuda:0",
model_kwargs={"attn_implementation": "flash_attention_2"},
)
@spaces.GPU
def transcribe(audio, task):
gr.Info("Starting transcription task")
outputs = pipe(
audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": task},
return_timestamps=False,
)
gr.Info("Finished transcription task")
return outputs['text'].strip()
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
audio = gr.Audio(label="Audio", type="filepath", interactive=True)
task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe", interactive=True)
btn = gr.Button("Transcribe", variant="primary")
output = gr.Textbox(label="Transcription", interactive=False)
btn.click(transcribe, inputs=[audio, task], outputs=output)
gr.Markdown(CREDITS)
demo.queue().launch()