#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import torch import logging from torch.cuda.amp import autocast from typing import Union, Dict, List, Tuple, Optional from funasr_detach.register import tables from funasr_detach.models.ctc.ctc import CTC from funasr_detach.utils import postprocess_utils from funasr_detach.metrics.compute_acc import th_accuracy from funasr_detach.utils.datadir_writer import DatadirWriter from funasr_detach.models.paraformer.search import Hypothesis from funasr_detach.models.paraformer.cif_predictor import mae_loss from funasr_detach.train_utils.device_funcs import force_gatherable from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank @tables.register("model_classes", "Paraformer") class Paraformer(torch.nn.Module): """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, specaug: Optional[str] = None, specaug_conf: Optional[Dict] = None, normalize: str = None, normalize_conf: Optional[Dict] = None, encoder: str = None, encoder_conf: Optional[Dict] = None, decoder: str = None, decoder_conf: Optional[Dict] = None, ctc: str = None, ctc_conf: Optional[Dict] = None, predictor: str = None, predictor_conf: Optional[Dict] = None, ctc_weight: float = 0.5, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, # report_cer: bool = True, # report_wer: bool = True, # sym_space: str = "", # sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, # predictor=None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, use_1st_decoder_loss: bool = False, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() if decoder is not None: decoder_class = tables.decoder_classes.get(decoder) decoder = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder_output_size, **decoder_conf, ) if ctc_weight > 0.0: if ctc_conf is None: ctc_conf = {} ctc = CTC( odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf ) if predictor is not None: predictor_class = tables.predictor_classes.get(predictor) predictor = predictor_class(**predictor_conf) # note that eos is the same as sos (equivalent ID) self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight # self.token_list = token_list.copy() # # self.frontend = frontend self.specaug = specaug self.normalize = normalize # self.preencoder = preencoder # self.postencoder = postencoder self.encoder = encoder # # if not hasattr(self.encoder, "interctc_use_conditioning"): # self.encoder.interctc_use_conditioning = False # if self.encoder.interctc_use_conditioning: # self.encoder.conditioning_layer = torch.nn.Linear( # vocab_size, self.encoder.output_size() # ) # # self.error_calculator = None # if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) # # if report_cer or report_wer: # self.error_calculator = ErrorCalculator( # token_list, sym_space, sym_blank, report_cer, report_wer # ) # if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc # # self.extract_feats_in_collect_stats = extract_feats_in_collect_stats self.predictor = predictor self.predictor_weight = predictor_weight self.predictor_bias = predictor_bias self.sampling_ratio = sampling_ratio self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) # self.step_cur = 0 # self.share_embedding = share_embedding if self.share_embedding: self.decoder.embed = None self.use_1st_decoder_loss = use_1st_decoder_loss self.length_normalized_loss = length_normalized_loss self.beam_search = None self.error_calculator = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb; # pdb.set_trace() if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = ( self._calc_att_loss(encoder_out, encoder_out_lens, text, text_lengths) ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight else: loss = ( self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight ) # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["pre_loss_att"] = ( pre_loss_att.detach() if pre_loss_att is not None else None ) stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, encoder_out_lens def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor( encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id ) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def cal_decoder_with_predictor( self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ): decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = ( ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] ).to(encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor( encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id ) # 0. sampler decoder_out_1st = None pre_loss_att = None if self.sampling_ratio > 0.0: sematic_embeds, decoder_out_1st = self.sampler( encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds ) else: sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre( ys_pad_lens.type_as(pre_token_length), pre_token_length ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att def sampler( self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds ): tgt_mask = ( ~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None] ).to(ys_pad.device) ys_pad_masked = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] else: ys_pad_embed = self.decoder.embed(ys_pad_masked) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = ( ((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio ).long() if target_num > 0: input_mask[li].scatter_( dim=0, index=torch.randperm(seq_lens[li])[:target_num].to( input_mask.device ), value=0, ) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to( pre_acoustic_embeds.device ) sematic_embeds = pre_acoustic_embeds.masked_fill( ~input_mask_expand_dim, 0 ) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc def init_beam_search( self, **kwargs, ): from funasr_detach.models.paraformer.search import BeamSearchPara from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus # 1. Build ASR model scorers = {} if self.ctc != None: ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) scorers.update(ctc=ctc) token_list = kwargs.get("token_list") scorers.update( length_bonus=LengthBonus(len(token_list)), ) # 3. Build ngram model # ngram is not supported now ngram = None scorers["ngram"] = ngram weights = dict( decoder=1.0 - kwargs.get("decoding_ctc_weight"), ctc=kwargs.get("decoding_ctc_weight", 0.0), lm=kwargs.get("lm_weight", 0.0), ngram=kwargs.get("ngram_weight", 0.0), length_bonus=kwargs.get("penalty", 0.0), ) beam_search = BeamSearchPara( beam_size=kwargs.get("beam_size", 2), weights=weights, scorers=scorers, sos=self.sos, eos=self.eos, vocab_size=len(token_list), token_list=token_list, pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", ) # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() # for scorer in scorers.values(): # if isinstance(scorer, torch.nn.Module): # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() self.beam_search = beam_search def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): # init beamsearch is_use_ctc = ( kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None ) is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} if ( isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" ): # fbank speech, speech_lengths = data_in, data_lengths if len(speech.shape) < 3: speech = speech[None, :, :] if speech_lengths is not None: speech_lengths = speech_lengths.squeeze(-1) else: speech_lengths = speech.shape[1] else: # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend, ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # predictor predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( predictor_outs[0], predictor_outs[1], predictor_outs[2], predictor_outs[3], ) pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] decoder_outs = self.cal_decoder_with_predictor( encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length ) decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] results = [] b, n, d = decoder_out.size() if isinstance(key[0], (list, tuple)): key = key[0] if len(key) < b: key = key * b for i in range(b): x = encoder_out[i, : encoder_out_lens[i], :] am_scores = decoder_out[i, : pre_token_length[i], :] if self.beam_search is not None: nbest_hyps = self.beam_search( x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0), ) nbest_hyps = nbest_hyps[: self.nbest] else: yseq = am_scores.argmax(dim=-1) score = am_scores.max(dim=-1)[0] score = torch.sum(score, dim=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens yseq = torch.tensor( [self.sos] + yseq.tolist() + [self.eos], device=yseq.device ) nbest_hyps = [Hypothesis(yseq=yseq, score=score)] for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{nbest_idx+1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int, ) ) if tokenizer is not None: # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text_postprocessed = tokenizer.tokens2text(token) if not hasattr(tokenizer, "bpemodel"): text_postprocessed, _ = postprocess_utils.sentence_postprocess( token ) result_i = {"key": key[i], "text": text_postprocessed} if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) # ibest_writer["text"][key[i]] = text ibest_writer["text"][key[i]] = text_postprocessed else: result_i = {"key": key[i], "token_int": token_int} results.append(result_i) return results, meta_data