# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import torch import torch.nn as nn from typing import Dict from .layers import LoRALayer def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none") -> None: for n, p in model.named_parameters(): if "lora_" not in n and "cif" not in n: p.requires_grad = False if bias == "none": return elif bias == "all": for n, p in model.named_parameters(): if "bias" in n: p.requires_grad = True elif bias == "lora_only": for m in model.modules(): if isinstance(m, LoRALayer) and hasattr(m, "bias") and m.bias is not None: m.bias.requires_grad = True else: raise NotImplementedError def lora_state_dict(model: nn.Module, bias: str = "none") -> Dict[str, torch.Tensor]: my_state_dict = model.state_dict() if bias == "none": return {k: my_state_dict[k] for k in my_state_dict if "lora_" in k} elif bias == "all": return { k: my_state_dict[k] for k in my_state_dict if "lora_" in k or "bias" in k } elif bias == "lora_only": to_return = {} for k in my_state_dict: if "lora_" in k: to_return[k] = my_state_dict[k] bias_name = k.split("lora_")[0] + "bias" if bias_name in my_state_dict: to_return[bias_name] = my_state_dict[bias_name] return to_return else: raise NotImplementedError