import math import torch import torch.nn.functional as F from torch import nn class MultiHeadSelfAttention(nn.Module): def __init__(self, n_units, h=8, dropout_rate=0.1): super().__init__() self.linearQ = nn.Linear(n_units, n_units) self.linearK = nn.Linear(n_units, n_units) self.linearV = nn.Linear(n_units, n_units) self.linearO = nn.Linear(n_units, n_units) self.d_k = n_units // h self.h = h self.dropout = nn.Dropout(dropout_rate) def __call__(self, x, batch_size, x_mask): q = self.linearQ(x).view(batch_size, -1, self.h, self.d_k) k = self.linearK(x).view(batch_size, -1, self.h, self.d_k) v = self.linearV(x).view(batch_size, -1, self.h, self.d_k) scores = torch.matmul(q.permute(0, 2, 1, 3), k.permute(0, 2, 3, 1)) / math.sqrt( self.d_k ) if x_mask is not None: x_mask = x_mask.unsqueeze(1) scores = scores.masked_fill(x_mask == 0, -1e9) self.att = F.softmax(scores, dim=3) p_att = self.dropout(self.att) x = torch.matmul(p_att, v.permute(0, 2, 1, 3)) x = x.permute(0, 2, 1, 3).contiguous().view(-1, self.h * self.d_k) return self.linearO(x) class PositionwiseFeedForward(nn.Module): def __init__(self, n_units, d_units, dropout_rate): super(PositionwiseFeedForward, self).__init__() self.linear1 = nn.Linear(n_units, d_units) self.linear2 = nn.Linear(d_units, n_units) self.dropout = nn.Dropout(dropout_rate) def __call__(self, x): return self.linear2(self.dropout(F.relu(self.linear1(x)))) class PositionalEncoding(torch.nn.Module): def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): super(PositionalEncoding, self).__init__() self.d_model = d_model self.reverse = reverse self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x): if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.d_model) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, x: torch.Tensor): self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.size(1)] return self.dropout(x) class EENDOLATransformerEncoder(nn.Module): def __init__( self, idim: int, n_layers: int, n_units: int, e_units: int = 2048, h: int = 4, dropout_rate: float = 0.1, use_pos_emb: bool = False, ): super(EENDOLATransformerEncoder, self).__init__() self.linear_in = nn.Linear(idim, n_units) self.lnorm_in = nn.LayerNorm(n_units) self.n_layers = n_layers self.dropout = nn.Dropout(dropout_rate) for i in range(n_layers): setattr(self, "{}{:d}".format("lnorm1_", i), nn.LayerNorm(n_units)) setattr( self, "{}{:d}".format("self_att_", i), MultiHeadSelfAttention(n_units, h), ) setattr(self, "{}{:d}".format("lnorm2_", i), nn.LayerNorm(n_units)) setattr( self, "{}{:d}".format("ff_", i), PositionwiseFeedForward(n_units, e_units, dropout_rate), ) self.lnorm_out = nn.LayerNorm(n_units) def __call__(self, x, x_mask=None): BT_size = x.shape[0] * x.shape[1] e = self.linear_in(x.reshape(BT_size, -1)) for i in range(self.n_layers): e = getattr(self, "{}{:d}".format("lnorm1_", i))(e) s = getattr(self, "{}{:d}".format("self_att_", i))(e, x.shape[0], x_mask) e = e + self.dropout(s) e = getattr(self, "{}{:d}".format("lnorm2_", i))(e) s = getattr(self, "{}{:d}".format("ff_", i))(e) e = e + self.dropout(s) return self.lnorm_out(e)