# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from funasr_detach.models.data2vec.data_utils import compute_mask_indices from funasr_detach.models.data2vec.ema_module import EMAModule from funasr_detach.models.data2vec.grad_multiply import GradMultiply from funasr_detach.models.data2vec.wav2vec2 import ( ConvFeatureExtractionModel, TransformerEncoder, ) from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask def get_annealed_rate(start, end, curr_step, total_steps): r = end - start pct_remaining = 1 - curr_step / total_steps return end - r * pct_remaining class Data2VecEncoder(nn.Module): def __init__( self, # for ConvFeatureExtractionModel input_size: int = None, extractor_mode: str = None, conv_feature_layers: str = "[(512,2,2)] + [(512,2,2)]", # for Transformer Encoder ## model architecture layer_type: str = "transformer", layer_norm_first: bool = False, encoder_layers: int = 12, encoder_embed_dim: int = 768, encoder_ffn_embed_dim: int = 3072, encoder_attention_heads: int = 12, activation_fn: str = "gelu", ## dropouts dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.0, encoder_layerdrop: float = 0.0, dropout_input: float = 0.0, dropout_features: float = 0.0, ## grad settings feature_grad_mult: float = 1.0, ## masking mask_prob: float = 0.65, mask_length: int = 10, mask_selection: str = "static", mask_other: int = 0, no_mask_overlap: bool = False, mask_min_space: int = 1, require_same_masks: bool = True, # if set as True, collate_fn should be clipping mask_dropout: float = 0.0, ## channel masking mask_channel_length: int = 10, mask_channel_prob: float = 0.0, mask_channel_before: bool = False, mask_channel_selection: str = "static", mask_channel_other: int = 0, no_mask_channel_overlap: bool = False, mask_channel_min_space: int = 1, ## positional embeddings conv_pos: int = 128, conv_pos_groups: int = 16, pos_conv_depth: int = 1, max_positions: int = 100000, # EMA module average_top_k_layers: int = 8, layer_norm_target_layer: bool = False, instance_norm_target_layer: bool = False, instance_norm_targets: bool = False, layer_norm_targets: bool = False, batch_norm_target_layer: bool = False, group_norm_target_layer: bool = False, ema_decay: float = 0.999, ema_end_decay: float = 0.9999, ema_anneal_end_step: int = 100000, ema_transformer_only: bool = True, ema_layers_only: bool = True, min_target_var: float = 0.1, min_pred_var: float = 0.01, # Loss loss_beta: float = 0.0, loss_scale: float = None, # FP16 optimization required_seq_len_multiple: int = 2, ): super().__init__() # ConvFeatureExtractionModel self.conv_feature_layers = conv_feature_layers feature_enc_layers = eval(conv_feature_layers) self.extractor_embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=extractor_mode, in_d=input_size, ) # Transformer Encoder ## model architecture self.layer_type = layer_type self.layer_norm_first = layer_norm_first self.encoder_layers = encoder_layers self.encoder_embed_dim = encoder_embed_dim self.encoder_ffn_embed_dim = encoder_ffn_embed_dim self.encoder_attention_heads = encoder_attention_heads self.activation_fn = activation_fn ## dropout self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.encoder_layerdrop = encoder_layerdrop self.dropout_input = dropout_input self.dropout_features = dropout_features ## grad settings self.feature_grad_mult = feature_grad_mult ## masking self.mask_prob = mask_prob self.mask_length = mask_length self.mask_selection = mask_selection self.mask_other = mask_other self.no_mask_overlap = no_mask_overlap self.mask_min_space = mask_min_space self.require_same_masks = ( require_same_masks # if set as True, collate_fn should be clipping ) self.mask_dropout = mask_dropout ## channel masking self.mask_channel_length = mask_channel_length self.mask_channel_prob = mask_channel_prob self.mask_channel_before = mask_channel_before self.mask_channel_selection = mask_channel_selection self.mask_channel_other = mask_channel_other self.no_mask_channel_overlap = no_mask_channel_overlap self.mask_channel_min_space = mask_channel_min_space ## positional embeddings self.conv_pos = conv_pos self.conv_pos_groups = conv_pos_groups self.pos_conv_depth = pos_conv_depth self.max_positions = max_positions self.mask_emb = nn.Parameter( torch.FloatTensor(self.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder( dropout=self.dropout, encoder_embed_dim=self.encoder_embed_dim, required_seq_len_multiple=required_seq_len_multiple, pos_conv_depth=self.pos_conv_depth, conv_pos=self.conv_pos, conv_pos_groups=self.conv_pos_groups, # transformer layers layer_type=self.layer_type, encoder_layers=self.encoder_layers, encoder_ffn_embed_dim=self.encoder_ffn_embed_dim, encoder_attention_heads=self.encoder_attention_heads, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, activation_fn=self.activation_fn, layer_norm_first=self.layer_norm_first, encoder_layerdrop=self.encoder_layerdrop, max_positions=self.max_positions, ) ## projections and dropouts self.post_extract_proj = nn.Linear(self.extractor_embed, self.encoder_embed_dim) self.dropout_input = nn.Dropout(self.dropout_input) self.dropout_features = nn.Dropout(self.dropout_features) self.layer_norm = torch.nn.LayerNorm(self.extractor_embed) self.final_proj = nn.Linear(self.encoder_embed_dim, self.encoder_embed_dim) # EMA module self.average_top_k_layers = average_top_k_layers self.layer_norm_target_layer = layer_norm_target_layer self.instance_norm_target_layer = instance_norm_target_layer self.instance_norm_targets = instance_norm_targets self.layer_norm_targets = layer_norm_targets self.batch_norm_target_layer = batch_norm_target_layer self.group_norm_target_layer = group_norm_target_layer self.ema_decay = ema_decay self.ema_end_decay = ema_end_decay self.ema_anneal_end_step = ema_anneal_end_step self.ema_transformer_only = ema_transformer_only self.ema_layers_only = ema_layers_only self.min_target_var = min_target_var self.min_pred_var = min_pred_var self.ema = None # Loss self.loss_beta = loss_beta self.loss_scale = loss_scale # FP16 optimization self.required_seq_len_multiple = required_seq_len_multiple self.num_updates = 0 logging.info("Data2VecEncoder settings: {}".format(self.__dict__)) def make_ema_teacher(self): skip_keys = set() if self.ema_layers_only: self.ema_transformer_only = True for k, _ in self.encoder.pos_conv.named_parameters(): skip_keys.add(f"pos_conv.{k}") self.ema = EMAModule( self.encoder if self.ema_transformer_only else self, ema_decay=self.ema_decay, ema_fp32=True, skip_keys=skip_keys, ) def set_num_updates(self, num_updates): if self.ema is None and self.final_proj is not None: logging.info("Making EMA Teacher") self.make_ema_teacher() elif self.training and self.ema is not None: if self.ema_decay != self.ema_end_decay: if num_updates >= self.ema_anneal_end_step: decay = self.ema_end_decay else: decay = get_annealed_rate( self.ema_decay, self.ema_end_decay, num_updates, self.ema_anneal_end_step, ) self.ema.set_decay(decay) if self.ema.get_decay() < 1: self.ema.step(self.encoder if self.ema_transformer_only else self) self.num_updates = num_updates def apply_mask( self, x, padding_mask, mask_indices=None, mask_channel_indices=None, ): B, T, C = x.shape if self.mask_channel_prob > 0 and self.mask_channel_before: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 if self.mask_prob > 0: if mask_indices is None: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=1, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, require_same_masks=self.require_same_masks, mask_dropout=self.mask_dropout, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0 and not self.mask_channel_before: if mask_channel_indices is None: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): return torch.floor( (input_length - kernel_size).to(torch.float32) / stride + 1 ) conv_cfg_list = eval(self.conv_feature_layers) for i in range(len(conv_cfg_list)): input_lengths = _conv_out_length( input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2] ) return input_lengths.to(torch.long) def forward( self, xs_pad, ilens=None, mask=False, features_only=True, layer=None, mask_indices=None, mask_channel_indices=None, padding_count=None, ): # create padding_mask by ilens if ilens is not None: padding_mask = make_pad_mask(lengths=ilens).to(xs_pad.device) else: padding_mask = None features = xs_pad if self.feature_grad_mult > 0: features = self.feature_extractor(features) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(features) features = features.transpose(1, 2) features = self.layer_norm(features) orig_padding_mask = padding_mask if padding_mask is not None: input_lengths = (1 - padding_mask.long()).sum(-1) # apply conv formula to get real output_lengths output_lengths = self._get_feat_extract_output_lengths(input_lengths) padding_mask = torch.zeros( features.shape[:2], dtype=features.dtype, device=features.device ) # these two operations makes sure that all values # before the output lengths indices are attended to padding_mask[ ( torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1, ) ] = 1 padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool() else: padding_mask = None if self.post_extract_proj is not None: features = self.post_extract_proj(features) pre_encoder_features = None if self.ema_transformer_only: pre_encoder_features = features.clone() features = self.dropout_input(features) if mask: x, mask_indices = self.apply_mask( features, padding_mask, mask_indices=mask_indices, mask_channel_indices=mask_channel_indices, ) else: x = features mask_indices = None x, layer_results = self.encoder( x, padding_mask=padding_mask, layer=layer, ) if features_only: encoder_out_lens = (1 - padding_mask.long()).sum(1) return x, encoder_out_lens, None result = { "losses": {}, "padding_mask": padding_mask, "x": x, } with torch.no_grad(): self.ema.model.eval() if self.ema_transformer_only: y, layer_results = self.ema.model.extract_features( pre_encoder_features, padding_mask=padding_mask, min_layer=self.encoder_layers - self.average_top_k_layers, ) y = { "x": y, "padding_mask": padding_mask, "layer_results": layer_results, } else: y = self.ema.model.extract_features( source=xs_pad, padding_mask=orig_padding_mask, mask=False, ) target_layer_results = [l[2] for l in y["layer_results"]] permuted = False if self.instance_norm_target_layer or self.batch_norm_target_layer: target_layer_results = [ tl.permute(1, 2, 0) for tl in target_layer_results # TBC -> BCT ] permuted = True if self.batch_norm_target_layer: target_layer_results = [ F.batch_norm( tl.float(), running_mean=None, running_var=None, training=True ) for tl in target_layer_results ] if self.instance_norm_target_layer: target_layer_results = [ F.instance_norm(tl.float()) for tl in target_layer_results ] if permuted: target_layer_results = [ tl.transpose(1, 2) for tl in target_layer_results # BCT -> BTC ] if self.group_norm_target_layer: target_layer_results = [ F.layer_norm(tl.float(), tl.shape[-2:]) for tl in target_layer_results ] if self.layer_norm_target_layer: target_layer_results = [ F.layer_norm(tl.float(), tl.shape[-1:]) for tl in target_layer_results ] y = sum(target_layer_results) / len(target_layer_results) if self.layer_norm_targets: y = F.layer_norm(y.float(), y.shape[-1:]) if self.instance_norm_targets: y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2) if not permuted: y = y.transpose(0, 1) y = y[mask_indices] x = x[mask_indices] x = self.final_proj(x) sz = x.size(-1) if self.loss_beta == 0: loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1) else: loss = F.smooth_l1_loss( x.float(), y.float(), reduction="none", beta=self.loss_beta ).sum(dim=-1) if self.loss_scale is not None: scale = self.loss_scale else: scale = 1 / math.sqrt(sz) result["losses"]["regression"] = loss.sum() * scale if "sample_size" not in result: result["sample_size"] = loss.numel() with torch.no_grad(): result["target_var"] = self.compute_var(y) result["pred_var"] = self.compute_var(x.float()) if self.num_updates > 5000 and result["target_var"] < self.min_target_var: logging.error( f"target var is {result['target_var'].item()} < {self.min_target_var}, exiting" ) raise Exception( f"target var is {result['target_var'].item()} < {self.min_target_var}, exiting" ) if self.num_updates > 5000 and result["pred_var"] < self.min_pred_var: logging.error( f"pred var is {result['pred_var'].item()} < {self.min_pred_var}, exiting" ) raise Exception( f"pred var is {result['pred_var'].item()} < {self.min_pred_var}, exiting" ) if self.ema is not None: result["ema_decay"] = self.ema.get_decay() * 1000 return result @staticmethod def compute_var(y): y = y.view(-1, y.size(-1)) if dist.is_initialized(): zc = torch.tensor(y.size(0)).cuda() zs = y.sum(dim=0) zss = (y**2).sum(dim=0) dist.all_reduce(zc) dist.all_reduce(zs) dist.all_reduce(zss) var = zss / (zc - 1) - (zs**2) / (zc * (zc - 1)) return torch.sqrt(var + 1e-6).mean() else: return torch.sqrt(y.var(dim=0) + 1e-6).mean() def extract_features(self, xs_pad, ilens, mask=False, layer=None): res = self.forward( xs_pad, ilens, mask=mask, features_only=True, layer=layer, ) return res def remove_pretraining_modules(self, last_layer=None): self.final_proj = None self.ema = None if last_layer is not None: self.encoder.layers = nn.ModuleList( l for i, l in enumerate(self.encoder.layers) if i <= last_layer ) def output_size(self) -> int: return self.encoder_embed_dim