#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Multi-Head Attention layer definition.""" import math import numpy import torch from torch import nn from typing import Optional, Tuple import torch.nn.functional as F from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask import funasr_detach.models.lora.layers as lora class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head, n_feat, dropout_rate): """Construct an MultiHeadedAttention object.""" super(MultiHeadedAttention, self).__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.attn = None self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv(self, query, key, value): """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) return q, k, v def forward_attention(self, value, scores, mask): """Compute attention context vector. Args: value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = float( numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min ) scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0 ) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, query, key, value, mask): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q, k, v = self.forward_qkv(query, key, value) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask) class MultiHeadedAttentionSANM(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__( self, n_head, in_feat, n_feat, dropout_rate, kernel_size, sanm_shfit=0, lora_list=None, lora_rank=8, lora_alpha=16, lora_dropout=0.1, ): """Construct an MultiHeadedAttention object.""" super().__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head # self.linear_q = nn.Linear(n_feat, n_feat) # self.linear_k = nn.Linear(n_feat, n_feat) # self.linear_v = nn.Linear(n_feat, n_feat) if lora_list is not None: if "o" in lora_list: self.linear_out = lora.Linear( n_feat, n_feat, r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) else: self.linear_out = nn.Linear(n_feat, n_feat) lora_qkv_list = ["q" in lora_list, "k" in lora_list, "v" in lora_list] if lora_qkv_list == [False, False, False]: self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3) else: self.linear_q_k_v = lora.MergedLinear( in_feat, n_feat * 3, r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, enable_lora=lora_qkv_list, ) else: self.linear_out = nn.Linear(n_feat, n_feat) self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3) self.attn = None self.dropout = nn.Dropout(p=dropout_rate) self.fsmn_block = nn.Conv1d( n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False ) # padding left_padding = (kernel_size - 1) // 2 if sanm_shfit > 0: left_padding = left_padding + sanm_shfit right_padding = kernel_size - 1 - left_padding self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) def forward_fsmn(self, inputs, mask, mask_shfit_chunk=None): b, t, d = inputs.size() if mask is not None: mask = torch.reshape(mask, (b, -1, 1)) if mask_shfit_chunk is not None: mask = mask * mask_shfit_chunk inputs = inputs * mask x = inputs.transpose(1, 2) x = self.pad_fn(x) x = self.fsmn_block(x) x = x.transpose(1, 2) x += inputs x = self.dropout(x) if mask is not None: x = x * mask return x def forward_qkv(self, x): """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). """ b, t, d = x.size() q_k_v = self.linear_q_k_v(x) q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1) q_h = torch.reshape(q, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time1, d_k) k_h = torch.reshape(k, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) v_h = torch.reshape(v, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) return q_h, k_h, v_h, v def forward_attention(self, value, scores, mask, mask_att_chunk_encoder=None): """Compute attention context vector. Args: value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: if mask_att_chunk_encoder is not None: mask = mask * mask_att_chunk_encoder mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = float( numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min ) scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0 ) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, x, mask, mask_shfit_chunk=None, mask_att_chunk_encoder=None): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h, v = self.forward_qkv(x) fsmn_memory = self.forward_fsmn(v, mask, mask_shfit_chunk) q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) att_outs = self.forward_attention(v_h, scores, mask, mask_att_chunk_encoder) return att_outs + fsmn_memory def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h, v = self.forward_qkv(x) if chunk_size is not None and look_back > 0 or look_back == -1: if cache is not None: k_h_stride = k_h[:, :, : -(chunk_size[2]), :] v_h_stride = v_h[:, :, : -(chunk_size[2]), :] k_h = torch.cat((cache["k"], k_h), dim=2) v_h = torch.cat((cache["v"], v_h), dim=2) cache["k"] = torch.cat((cache["k"], k_h_stride), dim=2) cache["v"] = torch.cat((cache["v"], v_h_stride), dim=2) if look_back != -1: cache["k"] = cache["k"][:, :, -(look_back * chunk_size[1]) :, :] cache["v"] = cache["v"][:, :, -(look_back * chunk_size[1]) :, :] else: cache_tmp = { "k": k_h[:, :, : -(chunk_size[2]), :], "v": v_h[:, :, : -(chunk_size[2]), :], } cache = cache_tmp fsmn_memory = self.forward_fsmn(v, None) q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) att_outs = self.forward_attention(v_h, scores, None) return att_outs + fsmn_memory, cache class MultiHeadedAttentionSANMDecoder(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_feat, dropout_rate, kernel_size, sanm_shfit=0): """Construct an MultiHeadedAttention object.""" super(MultiHeadedAttentionSANMDecoder, self).__init__() self.dropout = nn.Dropout(p=dropout_rate) self.fsmn_block = nn.Conv1d( n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False ) # padding # padding left_padding = (kernel_size - 1) // 2 if sanm_shfit > 0: left_padding = left_padding + sanm_shfit right_padding = kernel_size - 1 - left_padding self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) self.kernel_size = kernel_size def forward(self, inputs, mask, cache=None, mask_shfit_chunk=None): """ :param x: (#batch, time1, size). :param mask: Mask tensor (#batch, 1, time) :return: """ # print("in fsmn, inputs", inputs.size()) b, t, d = inputs.size() # logging.info( # "mask: {}".format(mask.size())) if mask is not None: mask = torch.reshape(mask, (b, -1, 1)) # logging.info("in fsmn, mask: {}, {}".format(mask.size(), mask[0:100:50, :, :])) if mask_shfit_chunk is not None: # logging.info("in fsmn, mask_fsmn: {}, {}".format(mask_shfit_chunk.size(), mask_shfit_chunk[0:100:50, :, :])) mask = mask * mask_shfit_chunk # logging.info("in fsmn, mask_after_fsmn: {}, {}".format(mask.size(), mask[0:100:50, :, :])) # print("in fsmn, mask", mask.size()) # print("in fsmn, inputs", inputs.size()) inputs = inputs * mask x = inputs.transpose(1, 2) b, d, t = x.size() if cache is None: # print("in fsmn, cache is None, x", x.size()) x = self.pad_fn(x) if not self.training: cache = x else: # print("in fsmn, cache is not None, x", x.size()) # x = torch.cat((x, cache), dim=2)[:, :, :-1] # if t < self.kernel_size: # x = self.pad_fn(x) x = torch.cat((cache[:, :, 1:], x), dim=2) x = x[:, :, -(self.kernel_size + t - 1) :] # print("in fsmn, cache is not None, x_cat", x.size()) cache = x x = self.fsmn_block(x) x = x.transpose(1, 2) # print("in fsmn, fsmn_out", x.size()) if x.size(1) != inputs.size(1): inputs = inputs[:, -1, :] x = x + inputs x = self.dropout(x) if mask is not None: x = x * mask return x, cache class MultiHeadedAttentionCrossAtt(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__( self, n_head, n_feat, dropout_rate, lora_list=None, lora_rank=8, lora_alpha=16, lora_dropout=0.1, encoder_output_size=None, ): """Construct an MultiHeadedAttention object.""" super(MultiHeadedAttentionCrossAtt, self).__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head if lora_list is not None: if "q" in lora_list: self.linear_q = lora.Linear( n_feat, n_feat, r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) else: self.linear_q = nn.Linear(n_feat, n_feat) lora_kv_list = ["k" in lora_list, "v" in lora_list] if lora_kv_list == [False, False]: self.linear_k_v = nn.Linear( n_feat if encoder_output_size is None else encoder_output_size, n_feat * 2, ) else: self.linear_k_v = lora.MergedLinear( n_feat if encoder_output_size is None else encoder_output_size, n_feat * 2, r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, enable_lora=lora_kv_list, ) if "o" in lora_list: self.linear_out = lora.Linear( n_feat, n_feat, r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) else: self.linear_out = nn.Linear(n_feat, n_feat) else: self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k_v = nn.Linear( n_feat if encoder_output_size is None else encoder_output_size, n_feat * 2, ) self.linear_out = nn.Linear(n_feat, n_feat) self.attn = None self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv(self, x, memory): """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). """ # print("in forward_qkv, x", x.size()) b = x.size(0) q = self.linear_q(x) q_h = torch.reshape(q, (b, -1, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time1, d_k) k_v = self.linear_k_v(memory) k, v = torch.split(k_v, int(self.h * self.d_k), dim=-1) k_h = torch.reshape(k, (b, -1, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) v_h = torch.reshape(v, (b, -1, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) return q_h, k_h, v_h def forward_attention(self, value, scores, mask, ret_attn=False): """Compute attention context vector. Args: value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = float( numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min ) # logging.info( # "scores: {}, mask_size: {}".format(scores.size(), mask.size())) scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0 ) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) if ret_attn: return self.linear_out(x), self.attn # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, x, memory, memory_mask, ret_attn=False): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h = self.forward_qkv(x, memory) q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) return self.forward_attention(v_h, scores, memory_mask, ret_attn=ret_attn) def forward_chunk(self, x, memory, cache=None, chunk_size=None, look_back=0): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h = self.forward_qkv(x, memory) if chunk_size is not None and look_back > 0: if cache is not None: k_h = torch.cat((cache["k"], k_h), dim=2) v_h = torch.cat((cache["v"], v_h), dim=2) cache["k"] = k_h[:, :, -(look_back * chunk_size[1]) :, :] cache["v"] = v_h[:, :, -(look_back * chunk_size[1]) :, :] else: cache_tmp = { "k": k_h[:, :, -(look_back * chunk_size[1]) :, :], "v": v_h[:, :, -(look_back * chunk_size[1]) :, :], } cache = cache_tmp q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) return self.forward_attention(v_h, scores, None), cache class MultiHeadSelfAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head, in_feat, n_feat, dropout_rate): """Construct an MultiHeadedAttention object.""" super(MultiHeadSelfAttention, self).__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_out = nn.Linear(n_feat, n_feat) self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3) self.attn = None self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv(self, x): """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). """ b, t, d = x.size() q_k_v = self.linear_q_k_v(x) q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1) q_h = torch.reshape(q, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time1, d_k) k_h = torch.reshape(k, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) v_h = torch.reshape(v, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) return q_h, k_h, v_h, v def forward_attention(self, value, scores, mask, mask_att_chunk_encoder=None): """Compute attention context vector. Args: value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: if mask_att_chunk_encoder is not None: mask = mask * mask_att_chunk_encoder mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = float( numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min ) scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0 ) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, x, mask, mask_att_chunk_encoder=None): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h, v = self.forward_qkv(x) q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) att_outs = self.forward_attention(v_h, scores, mask, mask_att_chunk_encoder) return att_outs