#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2020 Johns Hopkins University (Shinji Watanabe) # Northwestern Polytechnical University (Pengcheng Guo) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Encoder self-attention layer definition.""" import torch from torch import nn from funasr_detach.models.transformer.layer_norm import LayerNorm from torch.autograd import Variable class Encoder_Conformer_Layer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. conv_module (torch.nn.Module): Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__( self, size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, normalize_before=True, concat_after=False, cca_pos=0, ): """Construct an Encoder_Conformer_Layer object.""" super(Encoder_Conformer_Layer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.conv_module = conv_module self.norm_ff = LayerNorm(size) # for the FNN module self.norm_mha = LayerNorm(size) # for the MHA module if feed_forward_macaron is not None: self.norm_ff_macaron = LayerNorm(size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 if self.conv_module is not None: self.norm_conv = LayerNorm(size) # for the CNN module self.norm_final = LayerNorm(size) # for the final output of the block self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after self.cca_pos = cca_pos if self.concat_after: self.concat_linear = nn.Linear(size + size, size) def forward(self, x_input, mask, cache=None): """Compute encoded features. Args: x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/o pos emb: Tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ if isinstance(x_input, tuple): x, pos_emb = x_input[0], x_input[1] else: x, pos_emb = x_input, None # whether to use macaron style if self.feed_forward_macaron is not None: residual = x if self.normalize_before: x = self.norm_ff_macaron(x) x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x)) if not self.normalize_before: x = self.norm_ff_macaron(x) # multi-headed self-attention module residual = x if self.normalize_before: x = self.norm_mha(x) if cache is None: x_q = x else: assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) x_q = x[:, -1:, :] residual = residual[:, -1:, :] mask = None if mask is None else mask[:, -1:, :] if self.cca_pos < 2: if pos_emb is not None: x_att = self.self_attn(x_q, x, x, pos_emb, mask) else: x_att = self.self_attn(x_q, x, x, mask) else: x_att = self.self_attn(x_q, x, x, mask) if self.concat_after: x_concat = torch.cat((x, x_att), dim=-1) x = residual + self.concat_linear(x_concat) else: x = residual + self.dropout(x_att) if not self.normalize_before: x = self.norm_mha(x) # convolution module if self.conv_module is not None: residual = x if self.normalize_before: x = self.norm_conv(x) x = residual + self.dropout(self.conv_module(x)) if not self.normalize_before: x = self.norm_conv(x) # feed forward module residual = x if self.normalize_before: x = self.norm_ff(x) x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm_ff(x) if self.conv_module is not None: x = self.norm_final(x) if cache is not None: x = torch.cat([cache, x], dim=1) if pos_emb is not None: return (x, pos_emb), mask return x, mask class EncoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. conv_module (torch.nn.Module): Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__( self, size, self_attn_cros_channel, self_attn_conformer, feed_forward_csa, feed_forward_macaron_csa, conv_module_csa, dropout_rate, normalize_before=True, concat_after=False, ): """Construct an EncoderLayer object.""" super(EncoderLayer, self).__init__() self.encoder_cros_channel_atten = self_attn_cros_channel self.encoder_csa = Encoder_Conformer_Layer( size, self_attn_conformer, feed_forward_csa, feed_forward_macaron_csa, conv_module_csa, dropout_rate, normalize_before, concat_after, cca_pos=0, ) self.norm_mha = LayerNorm(size) # for the MHA module self.dropout = nn.Dropout(dropout_rate) def forward(self, x_input, mask, channel_size, cache=None): """Compute encoded features. Args: x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/o pos emb: Tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ if isinstance(x_input, tuple): x, pos_emb = x_input[0], x_input[1] else: x, pos_emb = x_input, None residual = x x = self.norm_mha(x) t_leng = x.size(1) d_dim = x.size(2) x_new = x.reshape(-1, channel_size, t_leng, d_dim).transpose( 1, 2 ) # x_new B*T * C * D x_k_v = x_new.new(x_new.size(0), x_new.size(1), 5, x_new.size(2), x_new.size(3)) pad_before = Variable( torch.zeros(x_new.size(0), 2, x_new.size(2), x_new.size(3)) ).type(x_new.type()) pad_after = Variable( torch.zeros(x_new.size(0), 2, x_new.size(2), x_new.size(3)) ).type(x_new.type()) x_pad = torch.cat([pad_before, x_new, pad_after], 1) x_k_v[:, :, 0, :, :] = x_pad[:, 0:-4, :, :] x_k_v[:, :, 1, :, :] = x_pad[:, 1:-3, :, :] x_k_v[:, :, 2, :, :] = x_pad[:, 2:-2, :, :] x_k_v[:, :, 3, :, :] = x_pad[:, 3:-1, :, :] x_k_v[:, :, 4, :, :] = x_pad[:, 4:, :, :] x_new = x_new.reshape(-1, channel_size, d_dim) x_k_v = x_k_v.reshape(-1, 5 * channel_size, d_dim) x_att = self.encoder_cros_channel_atten(x_new, x_k_v, x_k_v, None) x_att = ( x_att.reshape(-1, t_leng, channel_size, d_dim) .transpose(1, 2) .reshape(-1, t_leng, d_dim) ) x = residual + self.dropout(x_att) if pos_emb is not None: x_input = (x, pos_emb) else: x_input = x x_input, mask = self.encoder_csa(x_input, mask) return x_input, mask, channel_size