Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from typing import Sequence | |
from typing import Union | |
def mask_along_axis( | |
spec: torch.Tensor, | |
spec_lengths: torch.Tensor, | |
mask_width_range: Sequence[int] = (0, 30), | |
dim: int = 1, | |
num_mask: int = 2, | |
replace_with_zero: bool = True, | |
): | |
"""Apply mask along the specified direction. | |
Args: | |
spec: (Batch, Length, Freq) | |
spec_lengths: (Length): Not using lengths in this implementation | |
mask_width_range: Select the width randomly between this range | |
""" | |
org_size = spec.size() | |
if spec.dim() == 4: | |
# spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq) | |
spec = spec.view(-1, spec.size(2), spec.size(3)) | |
B = spec.shape[0] | |
# D = Length or Freq | |
D = spec.shape[dim] | |
# mask_length: (B, num_mask, 1) | |
mask_length = torch.randint( | |
mask_width_range[0], | |
mask_width_range[1], | |
(B, num_mask), | |
device=spec.device, | |
).unsqueeze(2) | |
# mask_pos: (B, num_mask, 1) | |
mask_pos = torch.randint( | |
0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device | |
).unsqueeze(2) | |
# aran: (1, 1, D) | |
aran = torch.arange(D, device=spec.device)[None, None, :] | |
# mask: (Batch, num_mask, D) | |
mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length)) | |
# Multiply masks: (Batch, num_mask, D) -> (Batch, D) | |
mask = mask.any(dim=1) | |
if dim == 1: | |
# mask: (Batch, Length, 1) | |
mask = mask.unsqueeze(2) | |
elif dim == 2: | |
# mask: (Batch, 1, Freq) | |
mask = mask.unsqueeze(1) | |
if replace_with_zero: | |
value = 0.0 | |
else: | |
value = spec.mean() | |
if spec.requires_grad: | |
spec = spec.masked_fill(mask, value) | |
else: | |
spec = spec.masked_fill_(mask, value) | |
spec = spec.view(*org_size) | |
return spec, spec_lengths | |
def mask_along_axis_lfr( | |
spec: torch.Tensor, | |
spec_lengths: torch.Tensor, | |
mask_width_range: Sequence[int] = (0, 30), | |
dim: int = 1, | |
num_mask: int = 2, | |
replace_with_zero: bool = True, | |
lfr_rate: int = 1, | |
): | |
"""Apply mask along the specified direction. | |
Args: | |
spec: (Batch, Length, Freq) | |
spec_lengths: (Length): Not using lengths in this implementation | |
mask_width_range: Select the width randomly between this range | |
lfr_rate:low frame rate | |
""" | |
org_size = spec.size() | |
if spec.dim() == 4: | |
# spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq) | |
spec = spec.view(-1, spec.size(2), spec.size(3)) | |
B = spec.shape[0] | |
# D = Length or Freq | |
D = spec.shape[dim] // lfr_rate | |
# mask_length: (B, num_mask, 1) | |
mask_length = torch.randint( | |
mask_width_range[0], | |
mask_width_range[1], | |
(B, num_mask), | |
device=spec.device, | |
).unsqueeze(2) | |
if lfr_rate > 1: | |
mask_length = mask_length.repeat(1, lfr_rate, 1) | |
# mask_pos: (B, num_mask, 1) | |
mask_pos = torch.randint( | |
0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device | |
).unsqueeze(2) | |
if lfr_rate > 1: | |
mask_pos_raw = mask_pos.clone() | |
mask_pos = torch.zeros((B, 0, 1), device=spec.device, dtype=torch.int32) | |
for i in range(lfr_rate): | |
mask_pos_i = mask_pos_raw + D * i | |
mask_pos = torch.cat((mask_pos, mask_pos_i), dim=1) | |
# aran: (1, 1, D) | |
D = spec.shape[dim] | |
aran = torch.arange(D, device=spec.device)[None, None, :] | |
# mask: (Batch, num_mask, D) | |
mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length)) | |
# Multiply masks: (Batch, num_mask, D) -> (Batch, D) | |
mask = mask.any(dim=1) | |
if dim == 1: | |
# mask: (Batch, Length, 1) | |
mask = mask.unsqueeze(2) | |
elif dim == 2: | |
# mask: (Batch, 1, Freq) | |
mask = mask.unsqueeze(1) | |
if replace_with_zero: | |
value = 0.0 | |
else: | |
value = spec.mean() | |
if spec.requires_grad: | |
spec = spec.masked_fill(mask, value) | |
else: | |
spec = spec.masked_fill_(mask, value) | |
spec = spec.view(*org_size) | |
return spec, spec_lengths | |
class MaskAlongAxis(torch.nn.Module): | |
def __init__( | |
self, | |
mask_width_range: Union[int, Sequence[int]] = (0, 30), | |
num_mask: int = 2, | |
dim: Union[int, str] = "time", | |
replace_with_zero: bool = True, | |
): | |
if isinstance(mask_width_range, int): | |
mask_width_range = (0, mask_width_range) | |
if len(mask_width_range) != 2: | |
raise TypeError( | |
f"mask_width_range must be a tuple of int and int values: " | |
f"{mask_width_range}", | |
) | |
assert mask_width_range[1] > mask_width_range[0] | |
if isinstance(dim, str): | |
if dim == "time": | |
dim = 1 | |
elif dim == "freq": | |
dim = 2 | |
else: | |
raise ValueError("dim must be int, 'time' or 'freq'") | |
if dim == 1: | |
self.mask_axis = "time" | |
elif dim == 2: | |
self.mask_axis = "freq" | |
else: | |
self.mask_axis = "unknown" | |
super().__init__() | |
self.mask_width_range = mask_width_range | |
self.num_mask = num_mask | |
self.dim = dim | |
self.replace_with_zero = replace_with_zero | |
def extra_repr(self): | |
return ( | |
f"mask_width_range={self.mask_width_range}, " | |
f"num_mask={self.num_mask}, axis={self.mask_axis}" | |
) | |
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None): | |
"""Forward function. | |
Args: | |
spec: (Batch, Length, Freq) | |
""" | |
return mask_along_axis( | |
spec, | |
spec_lengths, | |
mask_width_range=self.mask_width_range, | |
dim=self.dim, | |
num_mask=self.num_mask, | |
replace_with_zero=self.replace_with_zero, | |
) | |
class MaskAlongAxisVariableMaxWidth(torch.nn.Module): | |
"""Mask input spec along a specified axis with variable maximum width. | |
Formula: | |
max_width = max_width_ratio * seq_len | |
""" | |
def __init__( | |
self, | |
mask_width_ratio_range: Union[float, Sequence[float]] = (0.0, 0.05), | |
num_mask: int = 2, | |
dim: Union[int, str] = "time", | |
replace_with_zero: bool = True, | |
): | |
if isinstance(mask_width_ratio_range, float): | |
mask_width_ratio_range = (0.0, mask_width_ratio_range) | |
if len(mask_width_ratio_range) != 2: | |
raise TypeError( | |
f"mask_width_ratio_range must be a tuple of float and float values: " | |
f"{mask_width_ratio_range}", | |
) | |
assert mask_width_ratio_range[1] > mask_width_ratio_range[0] | |
if isinstance(dim, str): | |
if dim == "time": | |
dim = 1 | |
elif dim == "freq": | |
dim = 2 | |
else: | |
raise ValueError("dim must be int, 'time' or 'freq'") | |
if dim == 1: | |
self.mask_axis = "time" | |
elif dim == 2: | |
self.mask_axis = "freq" | |
else: | |
self.mask_axis = "unknown" | |
super().__init__() | |
self.mask_width_ratio_range = mask_width_ratio_range | |
self.num_mask = num_mask | |
self.dim = dim | |
self.replace_with_zero = replace_with_zero | |
def extra_repr(self): | |
return ( | |
f"mask_width_ratio_range={self.mask_width_ratio_range}, " | |
f"num_mask={self.num_mask}, axis={self.mask_axis}" | |
) | |
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None): | |
"""Forward function. | |
Args: | |
spec: (Batch, Length, Freq) | |
""" | |
max_seq_len = spec.shape[self.dim] | |
min_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[0]) | |
min_mask_width = max([0, min_mask_width]) | |
max_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[1]) | |
max_mask_width = min([max_seq_len, max_mask_width]) | |
if max_mask_width > min_mask_width: | |
return mask_along_axis( | |
spec, | |
spec_lengths, | |
mask_width_range=(min_mask_width, max_mask_width), | |
dim=self.dim, | |
num_mask=self.num_mask, | |
replace_with_zero=self.replace_with_zero, | |
) | |
return spec, spec_lengths | |
class MaskAlongAxisLFR(torch.nn.Module): | |
def __init__( | |
self, | |
mask_width_range: Union[int, Sequence[int]] = (0, 30), | |
num_mask: int = 2, | |
dim: Union[int, str] = "time", | |
replace_with_zero: bool = True, | |
lfr_rate: int = 1, | |
): | |
if isinstance(mask_width_range, int): | |
mask_width_range = (0, mask_width_range) | |
if len(mask_width_range) != 2: | |
raise TypeError( | |
f"mask_width_range must be a tuple of int and int values: " | |
f"{mask_width_range}", | |
) | |
assert mask_width_range[1] > mask_width_range[0] | |
if isinstance(dim, str): | |
if dim == "time": | |
dim = 1 | |
lfr_rate = 1 | |
elif dim == "freq": | |
dim = 2 | |
else: | |
raise ValueError("dim must be int, 'time' or 'freq'") | |
if dim == 1: | |
self.mask_axis = "time" | |
lfr_rate = 1 | |
elif dim == 2: | |
self.mask_axis = "freq" | |
else: | |
self.mask_axis = "unknown" | |
super().__init__() | |
self.mask_width_range = mask_width_range | |
self.num_mask = num_mask | |
self.dim = dim | |
self.replace_with_zero = replace_with_zero | |
self.lfr_rate = lfr_rate | |
def extra_repr(self): | |
return ( | |
f"mask_width_range={self.mask_width_range}, " | |
f"num_mask={self.num_mask}, axis={self.mask_axis}" | |
) | |
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None): | |
"""Forward function. | |
Args: | |
spec: (Batch, Length, Freq) | |
""" | |
return mask_along_axis_lfr( | |
spec, | |
spec_lengths, | |
mask_width_range=self.mask_width_range, | |
dim=self.dim, | |
num_mask=self.num_mask, | |
replace_with_zero=self.replace_with_zero, | |
lfr_rate=self.lfr_rate, | |
) | |