mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
23 kB
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from funasr_detach.models.scama.chunk_utilis import overlap_chunk
import numpy as np
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.sond.attention import MultiHeadSelfAttention
from funasr_detach.models.transformer.embedding import SinusoidalPositionEncoder
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.utils.subsampling import check_short_utt
from funasr_detach.models.ctc import CTC
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
class EncoderLayer(nn.Module):
def __init__(
self,
in_size,
size,
self_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(in_size)
self.norm2 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.in_size = in_size
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
self.dropout_rate = dropout_rate
def forward(self, x, mask, cache=None, mask_att_chunk_encoder=None):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, mask
residual = x
if self.normalize_before:
x = self.norm1(x)
if self.concat_after:
x_concat = torch.cat(
(
x,
self.self_attn(
x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder
),
),
dim=-1,
)
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = stoch_layer_coeff * self.concat_linear(x_concat)
else:
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.dropout(
self.self_attn(
x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder
)
)
else:
x = stoch_layer_coeff * self.dropout(
self.self_attn(
x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder
)
)
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
return x, mask, cache, mask_att_chunk_encoder
class SelfAttentionEncoder(AbsEncoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Self attention encoder in OpenNMT framework
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
pos_enc_class=SinusoidalPositionEncoder,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 1,
padding_idx: int = -1,
interctc_layer_idx: List[int] = [],
interctc_use_conditioning: bool = False,
tf2torch_tensor_name_prefix_torch: str = "encoder",
tf2torch_tensor_name_prefix_tf: str = "seq2seq/encoder",
out_units=None,
):
super().__init__()
self._output_size = output_size
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
SinusoidalPositionEncoder(),
)
elif input_layer is None:
if input_size == output_size:
self.embed = None
else:
self.embed = torch.nn.Linear(input_size, output_size)
elif input_layer == "pe":
self.embed = SinusoidalPositionEncoder()
elif input_layer == "null":
self.embed = None
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
self.encoders = repeat(
num_blocks,
lambda lnum: (
EncoderLayer(
output_size,
output_size,
MultiHeadSelfAttention(
attention_heads,
output_size,
output_size,
attention_dropout_rate,
),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
)
if lnum > 0
else EncoderLayer(
input_size,
output_size,
MultiHeadSelfAttention(
attention_heads,
(
input_size
if input_layer == "pe" or input_layer == "null"
else output_size
),
output_size,
attention_dropout_rate,
),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
)
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
self.dropout = nn.Dropout(dropout_rate)
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.out_units = out_units
if out_units is not None:
self.output_linear = nn.Linear(output_size, out_units)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Embed positions in tensor.
Args:
xs_pad: input tensor (B, L, D)
ilens: input length (B)
prev_states: Not to be used now.
Returns:
position embedded tensor and mask
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
xs_pad = xs_pad * self.output_size() ** 0.5
if self.embed is None:
xs_pad = xs_pad
elif (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
xs_pad = self.dropout(xs_pad)
# encoder_outs = self.encoders0(xs_pad, masks)
# xs_pad, masks = encoder_outs[0], encoder_outs[1]
intermediate_outs = []
if len(self.interctc_layer_idx) == 0:
encoder_outs = self.encoders(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
else:
for layer_idx, encoder_layer in enumerate(self.encoders):
encoder_outs = encoder_layer(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
if layer_idx + 1 in self.interctc_layer_idx:
encoder_out = xs_pad
# intermediate outputs are also normalized
if self.normalize_before:
encoder_out = self.after_norm(encoder_out)
intermediate_outs.append((layer_idx + 1, encoder_out))
if self.interctc_use_conditioning:
ctc_out = ctc.softmax(encoder_out)
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
if self.out_units is not None:
xs_pad = self.output_linear(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
map_dict_local = {
# cicd
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.encoders.layeridx.norm1.weight".format(tensor_name_prefix_torch): {
"name": "{}/layer_layeridx/multi_head/LayerNorm/gamma".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.norm1.bias".format(tensor_name_prefix_torch): {
"name": "{}/layer_layeridx/multi_head/LayerNorm/beta".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.self_attn.linear_q_k_v.weight".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/multi_head/conv1d/kernel".format(
tensor_name_prefix_tf
),
"squeeze": 0,
"transpose": (1, 0),
}, # (768,256),(1,256,768)
"{}.encoders.layeridx.self_attn.linear_q_k_v.bias".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/multi_head/conv1d/bias".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (768,),(768,)
"{}.encoders.layeridx.self_attn.linear_out.weight".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/multi_head/conv1d_1/kernel".format(
tensor_name_prefix_tf
),
"squeeze": 0,
"transpose": (1, 0),
}, # (256,256),(1,256,256)
"{}.encoders.layeridx.self_attn.linear_out.bias".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/multi_head/conv1d_1/bias".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
# ffn
"{}.encoders.layeridx.norm2.weight".format(tensor_name_prefix_torch): {
"name": "{}/layer_layeridx/ffn/LayerNorm/gamma".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.norm2.bias".format(tensor_name_prefix_torch): {
"name": "{}/layer_layeridx/ffn/LayerNorm/beta".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.feed_forward.w_1.weight".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/ffn/conv1d/kernel".format(
tensor_name_prefix_tf
),
"squeeze": 0,
"transpose": (1, 0),
}, # (1024,256),(1,256,1024)
"{}.encoders.layeridx.feed_forward.w_1.bias".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/ffn/conv1d/bias".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (1024,),(1024,)
"{}.encoders.layeridx.feed_forward.w_2.weight".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/ffn/conv1d_1/kernel".format(
tensor_name_prefix_tf
),
"squeeze": 0,
"transpose": (1, 0),
}, # (256,1024),(1,1024,256)
"{}.encoders.layeridx.feed_forward.w_2.bias".format(
tensor_name_prefix_torch
): {
"name": "{}/layer_layeridx/ffn/conv1d_1/bias".format(
tensor_name_prefix_tf
),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
# out norm
"{}.after_norm.weight".format(tensor_name_prefix_torch): {
"name": "{}/LayerNorm/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.after_norm.bias".format(tensor_name_prefix_torch): {
"name": "{}/LayerNorm/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
}
if self.out_units is not None:
map_dict_local.update(
{
"{}.output_linear.weight".format(tensor_name_prefix_torch): {
"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 0),
},
"{}.output_linear.bias".format(tensor_name_prefix_torch): {
"name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
}
)
return map_dict_local
def convert_tf2torch(
self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
# process special (first and last) layers
if name in map_dict:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
)
)
# process general layers
else:
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
names = name.replace(
self.tf2torch_tensor_name_prefix_torch, "todo"
).split(".")
layeridx = int(names[2])
name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
if name_q in map_dict.keys():
name_v = map_dict[name_q]["name"]
name_tf = name_v.replace("layeridx", "{}".format(layeridx))
data_tf = var_dict_tf[name_tf]
if map_dict[name_q]["squeeze"] is not None:
data_tf = np.squeeze(
data_tf, axis=map_dict[name_q]["squeeze"]
)
if map_dict[name_q]["transpose"] is not None:
data_tf = np.transpose(
data_tf, map_dict[name_q]["transpose"]
)
data_tf = (
torch.from_numpy(data_tf).type(torch.float32).to("cpu")
)
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name,
data_tf.size(),
name_tf,
var_dict_tf[name_tf].shape,
)
)
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update