Spaces:
Runtime error
Runtime error
from typing import List | |
from typing import Optional | |
from typing import Sequence | |
from typing import Tuple | |
from typing import Union | |
import logging | |
import torch | |
import torch.nn as nn | |
from funasr_detach.models.scama.chunk_utilis import overlap_chunk | |
import numpy as np | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.sond.attention import MultiHeadSelfAttention | |
from funasr_detach.models.transformer.embedding import SinusoidalPositionEncoder | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear | |
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d | |
from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, # noqa: H301 | |
) | |
from funasr_detach.models.transformer.utils.repeat import repeat | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8 | |
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError | |
from funasr_detach.models.transformer.utils.subsampling import check_short_utt | |
from funasr_detach.models.ctc import CTC | |
from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
class EncoderLayer(nn.Module): | |
def __init__( | |
self, | |
in_size, | |
size, | |
self_attn, | |
feed_forward, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
stochastic_depth_rate=0.0, | |
): | |
"""Construct an EncoderLayer object.""" | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.norm1 = LayerNorm(in_size) | |
self.norm2 = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.in_size = in_size | |
self.size = size | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
self.stochastic_depth_rate = stochastic_depth_rate | |
self.dropout_rate = dropout_rate | |
def forward(self, x, mask, cache=None, mask_att_chunk_encoder=None): | |
"""Compute encoded features. | |
Args: | |
x_input (torch.Tensor): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time). | |
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
skip_layer = False | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
stoch_layer_coeff = 1.0 | |
if self.training and self.stochastic_depth_rate > 0: | |
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
if skip_layer: | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, mask | |
residual = x | |
if self.normalize_before: | |
x = self.norm1(x) | |
if self.concat_after: | |
x_concat = torch.cat( | |
( | |
x, | |
self.self_attn( | |
x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder | |
), | |
), | |
dim=-1, | |
) | |
if self.in_size == self.size: | |
x = residual + stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
x = stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
if self.in_size == self.size: | |
x = residual + stoch_layer_coeff * self.dropout( | |
self.self_attn( | |
x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder | |
) | |
) | |
else: | |
x = stoch_layer_coeff * self.dropout( | |
self.self_attn( | |
x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder | |
) | |
) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
return x, mask, cache, mask_att_chunk_encoder | |
class SelfAttentionEncoder(AbsEncoder): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Self attention encoder in OpenNMT framework | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: Optional[str] = "conv2d", | |
pos_enc_class=SinusoidalPositionEncoder, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
positionwise_layer_type: str = "linear", | |
positionwise_conv_kernel_size: int = 1, | |
padding_idx: int = -1, | |
interctc_layer_idx: List[int] = [], | |
interctc_use_conditioning: bool = False, | |
tf2torch_tensor_name_prefix_torch: str = "encoder", | |
tf2torch_tensor_name_prefix_tf: str = "seq2seq/encoder", | |
out_units=None, | |
): | |
super().__init__() | |
self._output_size = output_size | |
if input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(input_size, output_size), | |
torch.nn.LayerNorm(output_size), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.ReLU(), | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d": | |
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate) | |
elif input_layer == "conv2d2": | |
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate) | |
elif input_layer == "conv2d6": | |
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate) | |
elif input_layer == "conv2d8": | |
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate) | |
elif input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), | |
SinusoidalPositionEncoder(), | |
) | |
elif input_layer is None: | |
if input_size == output_size: | |
self.embed = None | |
else: | |
self.embed = torch.nn.Linear(input_size, output_size) | |
elif input_layer == "pe": | |
self.embed = SinusoidalPositionEncoder() | |
elif input_layer == "null": | |
self.embed = None | |
else: | |
raise ValueError("unknown input_layer: " + input_layer) | |
self.normalize_before = normalize_before | |
if positionwise_layer_type == "linear": | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d": | |
positionwise_layer = MultiLayeredConv1d | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d-linear": | |
positionwise_layer = Conv1dLinear | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
else: | |
raise NotImplementedError("Support only linear or conv1d.") | |
self.encoders = repeat( | |
num_blocks, | |
lambda lnum: ( | |
EncoderLayer( | |
output_size, | |
output_size, | |
MultiHeadSelfAttention( | |
attention_heads, | |
output_size, | |
output_size, | |
attention_dropout_rate, | |
), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
) | |
if lnum > 0 | |
else EncoderLayer( | |
input_size, | |
output_size, | |
MultiHeadSelfAttention( | |
attention_heads, | |
( | |
input_size | |
if input_layer == "pe" or input_layer == "null" | |
else output_size | |
), | |
output_size, | |
attention_dropout_rate, | |
), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
) | |
), | |
) | |
if self.normalize_before: | |
self.after_norm = LayerNorm(output_size) | |
self.interctc_layer_idx = interctc_layer_idx | |
if len(interctc_layer_idx) > 0: | |
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks | |
self.interctc_use_conditioning = interctc_use_conditioning | |
self.conditioning_layer = None | |
self.dropout = nn.Dropout(dropout_rate) | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
self.out_units = out_units | |
if out_units is not None: | |
self.output_linear = nn.Linear(output_size, out_units) | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
ctc: CTC = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
"""Embed positions in tensor. | |
Args: | |
xs_pad: input tensor (B, L, D) | |
ilens: input length (B) | |
prev_states: Not to be used now. | |
Returns: | |
position embedded tensor and mask | |
""" | |
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
xs_pad = xs_pad * self.output_size() ** 0.5 | |
if self.embed is None: | |
xs_pad = xs_pad | |
elif ( | |
isinstance(self.embed, Conv2dSubsampling) | |
or isinstance(self.embed, Conv2dSubsampling2) | |
or isinstance(self.embed, Conv2dSubsampling6) | |
or isinstance(self.embed, Conv2dSubsampling8) | |
): | |
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) | |
if short_status: | |
raise TooShortUttError( | |
f"has {xs_pad.size(1)} frames and is too short for subsampling " | |
+ f"(it needs more than {limit_size} frames), return empty results", | |
xs_pad.size(1), | |
limit_size, | |
) | |
xs_pad, masks = self.embed(xs_pad, masks) | |
else: | |
xs_pad = self.embed(xs_pad) | |
xs_pad = self.dropout(xs_pad) | |
# encoder_outs = self.encoders0(xs_pad, masks) | |
# xs_pad, masks = encoder_outs[0], encoder_outs[1] | |
intermediate_outs = [] | |
if len(self.interctc_layer_idx) == 0: | |
encoder_outs = self.encoders(xs_pad, masks) | |
xs_pad, masks = encoder_outs[0], encoder_outs[1] | |
else: | |
for layer_idx, encoder_layer in enumerate(self.encoders): | |
encoder_outs = encoder_layer(xs_pad, masks) | |
xs_pad, masks = encoder_outs[0], encoder_outs[1] | |
if layer_idx + 1 in self.interctc_layer_idx: | |
encoder_out = xs_pad | |
# intermediate outputs are also normalized | |
if self.normalize_before: | |
encoder_out = self.after_norm(encoder_out) | |
intermediate_outs.append((layer_idx + 1, encoder_out)) | |
if self.interctc_use_conditioning: | |
ctc_out = ctc.softmax(encoder_out) | |
xs_pad = xs_pad + self.conditioning_layer(ctc_out) | |
if self.normalize_before: | |
xs_pad = self.after_norm(xs_pad) | |
if self.out_units is not None: | |
xs_pad = self.output_linear(xs_pad) | |
olens = masks.squeeze(1).sum(1) | |
if len(intermediate_outs) > 0: | |
return (xs_pad, intermediate_outs), olens, None | |
return xs_pad, olens, None | |
def gen_tf2torch_map_dict(self): | |
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
map_dict_local = { | |
# cicd | |
# torch: conv1d.weight in "out_channel in_channel kernel_size" | |
# tf : conv1d.weight in "kernel_size in_channel out_channel" | |
# torch: linear.weight in "out_channel in_channel" | |
# tf : dense.weight in "in_channel out_channel" | |
"{}.encoders.layeridx.norm1.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/layer_layeridx/multi_head/LayerNorm/gamma".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
"{}.encoders.layeridx.norm1.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/layer_layeridx/multi_head/LayerNorm/beta".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
"{}.encoders.layeridx.self_attn.linear_q_k_v.weight".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/multi_head/conv1d/kernel".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": 0, | |
"transpose": (1, 0), | |
}, # (768,256),(1,256,768) | |
"{}.encoders.layeridx.self_attn.linear_q_k_v.bias".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/multi_head/conv1d/bias".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (768,),(768,) | |
"{}.encoders.layeridx.self_attn.linear_out.weight".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/multi_head/conv1d_1/kernel".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": 0, | |
"transpose": (1, 0), | |
}, # (256,256),(1,256,256) | |
"{}.encoders.layeridx.self_attn.linear_out.bias".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/multi_head/conv1d_1/bias".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
# ffn | |
"{}.encoders.layeridx.norm2.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/layer_layeridx/ffn/LayerNorm/gamma".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
"{}.encoders.layeridx.norm2.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/layer_layeridx/ffn/LayerNorm/beta".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
"{}.encoders.layeridx.feed_forward.w_1.weight".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/ffn/conv1d/kernel".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": 0, | |
"transpose": (1, 0), | |
}, # (1024,256),(1,256,1024) | |
"{}.encoders.layeridx.feed_forward.w_1.bias".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/ffn/conv1d/bias".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (1024,),(1024,) | |
"{}.encoders.layeridx.feed_forward.w_2.weight".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/ffn/conv1d_1/kernel".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": 0, | |
"transpose": (1, 0), | |
}, # (256,1024),(1,1024,256) | |
"{}.encoders.layeridx.feed_forward.w_2.bias".format( | |
tensor_name_prefix_torch | |
): { | |
"name": "{}/layer_layeridx/ffn/conv1d_1/bias".format( | |
tensor_name_prefix_tf | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
# out norm | |
"{}.after_norm.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/LayerNorm/gamma".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
"{}.after_norm.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/LayerNorm/beta".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
} | |
if self.out_units is not None: | |
map_dict_local.update( | |
{ | |
"{}.output_linear.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf), | |
"squeeze": 0, | |
"transpose": (1, 0), | |
}, | |
"{}.output_linear.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/conv1d/bias".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, # (256,),(256,) | |
} | |
) | |
return map_dict_local | |
def convert_tf2torch( | |
self, | |
var_dict_tf, | |
var_dict_torch, | |
): | |
map_dict = self.gen_tf2torch_map_dict() | |
var_dict_torch_update = dict() | |
for name in sorted(var_dict_torch.keys(), reverse=False): | |
if name.startswith(self.tf2torch_tensor_name_prefix_torch): | |
# process special (first and last) layers | |
if name in map_dict: | |
name_tf = map_dict[name]["name"] | |
data_tf = var_dict_tf[name_tf] | |
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
if map_dict[name]["squeeze"] is not None: | |
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) | |
if map_dict[name]["transpose"] is not None: | |
data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape | |
) | |
) | |
# process general layers | |
else: | |
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case | |
names = name.replace( | |
self.tf2torch_tensor_name_prefix_torch, "todo" | |
).split(".") | |
layeridx = int(names[2]) | |
name_q = name.replace(".{}.".format(layeridx), ".layeridx.") | |
if name_q in map_dict.keys(): | |
name_v = map_dict[name_q]["name"] | |
name_tf = name_v.replace("layeridx", "{}".format(layeridx)) | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name_q]["squeeze"] is not None: | |
data_tf = np.squeeze( | |
data_tf, axis=map_dict[name_q]["squeeze"] | |
) | |
if map_dict[name_q]["transpose"] is not None: | |
data_tf = np.transpose( | |
data_tf, map_dict[name_q]["transpose"] | |
) | |
data_tf = ( | |
torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
) | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, | |
data_tf.size(), | |
name_tf, | |
var_dict_tf[name_tf].shape, | |
) | |
) | |
else: | |
logging.warning("{} is missed from tf checkpoint".format(name)) | |
return var_dict_torch_update | |