Spaces:
Runtime error
Runtime error
import torch | |
from torch.nn import functional as F | |
from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
from typing import Tuple, Optional | |
from funasr_detach.models.pooling.statistic_pooling import ( | |
statistic_pooling, | |
windowed_statistic_pooling, | |
) | |
from collections import OrderedDict | |
import logging | |
import numpy as np | |
class BasicLayer(torch.nn.Module): | |
def __init__( | |
self, in_filters: int, filters: int, stride: int, bn_momentum: float = 0.5 | |
): | |
super().__init__() | |
self.stride = stride | |
self.in_filters = in_filters | |
self.filters = filters | |
self.bn1 = torch.nn.BatchNorm2d( | |
in_filters, eps=1e-3, momentum=bn_momentum, affine=True | |
) | |
self.relu1 = torch.nn.ReLU() | |
self.conv1 = torch.nn.Conv2d(in_filters, filters, 3, stride, bias=False) | |
self.bn2 = torch.nn.BatchNorm2d( | |
filters, eps=1e-3, momentum=bn_momentum, affine=True | |
) | |
self.relu2 = torch.nn.ReLU() | |
self.conv2 = torch.nn.Conv2d(filters, filters, 3, 1, bias=False) | |
if in_filters != filters or stride > 1: | |
self.conv_sc = torch.nn.Conv2d(in_filters, filters, 1, stride, bias=False) | |
self.bn_sc = torch.nn.BatchNorm2d( | |
filters, eps=1e-3, momentum=bn_momentum, affine=True | |
) | |
def proper_padding(self, x, stride): | |
# align padding mode to tf.layers.conv2d with padding_mod="same" | |
if stride == 1: | |
return F.pad(x, (1, 1, 1, 1), "constant", 0) | |
elif stride == 2: | |
h, w = x.size(2), x.size(3) | |
# (left, right, top, bottom) | |
return F.pad(x, (w % 2, 1, h % 2, 1), "constant", 0) | |
def forward(self, xs_pad, ilens): | |
identity = xs_pad | |
if self.in_filters != self.filters or self.stride > 1: | |
identity = self.conv_sc(identity) | |
identity = self.bn_sc(identity) | |
xs_pad = self.relu1(self.bn1(xs_pad)) | |
xs_pad = self.proper_padding(xs_pad, self.stride) | |
xs_pad = self.conv1(xs_pad) | |
xs_pad = self.relu2(self.bn2(xs_pad)) | |
xs_pad = self.proper_padding(xs_pad, 1) | |
xs_pad = self.conv2(xs_pad) | |
if self.stride == 2: | |
ilens = (ilens + 1) // self.stride | |
return xs_pad + identity, ilens | |
class BasicBlock(torch.nn.Module): | |
def __init__(self, in_filters, filters, num_layer, stride, bn_momentum=0.5): | |
super().__init__() | |
self.num_layer = num_layer | |
for i in range(num_layer): | |
layer = BasicLayer( | |
in_filters if i == 0 else filters, | |
filters, | |
stride if i == 0 else 1, | |
bn_momentum, | |
) | |
self.add_module("layer_{}".format(i), layer) | |
def forward(self, xs_pad, ilens): | |
for i in range(self.num_layer): | |
xs_pad, ilens = self._modules["layer_{}".format(i)](xs_pad, ilens) | |
return xs_pad, ilens | |
class ResNet34(AbsEncoder): | |
def __init__( | |
self, | |
input_size, | |
use_head_conv=True, | |
batchnorm_momentum=0.5, | |
use_head_maxpool=False, | |
num_nodes_pooling_layer=256, | |
layers_in_block=(3, 4, 6, 3), | |
filters_in_block=(32, 64, 128, 256), | |
): | |
super(ResNet34, self).__init__() | |
self.use_head_conv = use_head_conv | |
self.use_head_maxpool = use_head_maxpool | |
self.num_nodes_pooling_layer = num_nodes_pooling_layer | |
self.layers_in_block = layers_in_block | |
self.filters_in_block = filters_in_block | |
self.input_size = input_size | |
pre_filters = filters_in_block[0] | |
if use_head_conv: | |
self.pre_conv = torch.nn.Conv2d( | |
1, pre_filters, 3, 1, 1, bias=False, padding_mode="zeros" | |
) | |
self.pre_conv_bn = torch.nn.BatchNorm2d( | |
pre_filters, eps=1e-3, momentum=batchnorm_momentum | |
) | |
if use_head_maxpool: | |
self.head_maxpool = torch.nn.MaxPool2d(3, 1, padding=1) | |
for i in range(len(layers_in_block)): | |
if i == 0: | |
in_filters = pre_filters if self.use_head_conv else 1 | |
else: | |
in_filters = filters_in_block[i - 1] | |
block = BasicBlock( | |
in_filters, | |
filters=filters_in_block[i], | |
num_layer=layers_in_block[i], | |
stride=1 if i == 0 else 2, | |
bn_momentum=batchnorm_momentum, | |
) | |
self.add_module("block_{}".format(i), block) | |
self.resnet0_dense = torch.nn.Conv2d( | |
filters_in_block[-1], num_nodes_pooling_layer, 1 | |
) | |
self.resnet0_bn = torch.nn.BatchNorm2d( | |
num_nodes_pooling_layer, eps=1e-3, momentum=batchnorm_momentum | |
) | |
self.time_ds_ratio = 8 | |
def output_size(self) -> int: | |
return self.num_nodes_pooling_layer | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
features = xs_pad | |
assert ( | |
features.size(-1) == self.input_size | |
), "Dimension of features {} doesn't match the input_size {}.".format( | |
features.size(-1), self.input_size | |
) | |
features = torch.unsqueeze(features, dim=1) | |
if self.use_head_conv: | |
features = self.pre_conv(features) | |
features = self.pre_conv_bn(features) | |
features = F.relu(features) | |
if self.use_head_maxpool: | |
features = self.head_maxpool(features) | |
resnet_outs, resnet_out_lens = features, ilens | |
for i in range(len(self.layers_in_block)): | |
block = self._modules["block_{}".format(i)] | |
resnet_outs, resnet_out_lens = block(resnet_outs, resnet_out_lens) | |
features = self.resnet0_dense(resnet_outs) | |
features = F.relu(features) | |
features = self.resnet0_bn(features) | |
return features, resnet_out_lens | |
# Note: For training, this implement is not equivalent to tf because of the kernel_regularizer in tf.layers. | |
# TODO: implement kernel_regularizer in torch with munal loss addition or weigth_decay in the optimizer | |
class ResNet34_SP_L2Reg(AbsEncoder): | |
def __init__( | |
self, | |
input_size, | |
use_head_conv=True, | |
batchnorm_momentum=0.5, | |
use_head_maxpool=False, | |
num_nodes_pooling_layer=256, | |
layers_in_block=(3, 4, 6, 3), | |
filters_in_block=(32, 64, 128, 256), | |
tf2torch_tensor_name_prefix_torch="encoder", | |
tf2torch_tensor_name_prefix_tf="EAND/speech_encoder", | |
tf_train_steps=720000, | |
): | |
super(ResNet34_SP_L2Reg, self).__init__() | |
self.use_head_conv = use_head_conv | |
self.use_head_maxpool = use_head_maxpool | |
self.num_nodes_pooling_layer = num_nodes_pooling_layer | |
self.layers_in_block = layers_in_block | |
self.filters_in_block = filters_in_block | |
self.input_size = input_size | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
self.tf_train_steps = tf_train_steps | |
pre_filters = filters_in_block[0] | |
if use_head_conv: | |
self.pre_conv = torch.nn.Conv2d( | |
1, pre_filters, 3, 1, 1, bias=False, padding_mode="zeros" | |
) | |
self.pre_conv_bn = torch.nn.BatchNorm2d( | |
pre_filters, eps=1e-3, momentum=batchnorm_momentum | |
) | |
if use_head_maxpool: | |
self.head_maxpool = torch.nn.MaxPool2d(3, 1, padding=1) | |
for i in range(len(layers_in_block)): | |
if i == 0: | |
in_filters = pre_filters if self.use_head_conv else 1 | |
else: | |
in_filters = filters_in_block[i - 1] | |
block = BasicBlock( | |
in_filters, | |
filters=filters_in_block[i], | |
num_layer=layers_in_block[i], | |
stride=1 if i == 0 else 2, | |
bn_momentum=batchnorm_momentum, | |
) | |
self.add_module("block_{}".format(i), block) | |
self.resnet0_dense = torch.nn.Conv1d( | |
filters_in_block[-1] * input_size // 8, num_nodes_pooling_layer, 1 | |
) | |
self.resnet0_bn = torch.nn.BatchNorm1d( | |
num_nodes_pooling_layer, eps=1e-3, momentum=batchnorm_momentum | |
) | |
self.time_ds_ratio = 8 | |
def output_size(self) -> int: | |
return self.num_nodes_pooling_layer | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
features = xs_pad | |
assert ( | |
features.size(-1) == self.input_size | |
), "Dimension of features {} doesn't match the input_size {}.".format( | |
features.size(-1), self.input_size | |
) | |
features = torch.unsqueeze(features, dim=1) | |
if self.use_head_conv: | |
features = self.pre_conv(features) | |
features = self.pre_conv_bn(features) | |
features = F.relu(features) | |
if self.use_head_maxpool: | |
features = self.head_maxpool(features) | |
resnet_outs, resnet_out_lens = features, ilens | |
for i in range(len(self.layers_in_block)): | |
block = self._modules["block_{}".format(i)] | |
resnet_outs, resnet_out_lens = block(resnet_outs, resnet_out_lens) | |
# B, C, T, F | |
bb, cc, tt, ff = resnet_outs.shape | |
resnet_outs = torch.reshape(resnet_outs.permute(0, 3, 1, 2), [bb, ff * cc, tt]) | |
features = self.resnet0_dense(resnet_outs) | |
features = F.relu(features) | |
features = self.resnet0_bn(features) | |
return features, resnet_out_lens | |
def gen_tf2torch_map_dict(self): | |
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
train_steps = self.tf_train_steps | |
map_dict_local = { | |
# torch: conv1d.weight in "out_channel in_channel kernel_size" | |
# tf : conv1d.weight in "kernel_size in_channel out_channel" | |
# torch: linear.weight in "out_channel in_channel" | |
# tf : dense.weight in "in_channel out_channel" | |
"{}.pre_conv.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv/kernel".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1), | |
}, | |
"{}.pre_conv_bn.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/beta".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/gamma".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.running_mean".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/moving_mean".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.running_var".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/moving_variance".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.num_batches_tracked".format( | |
tensor_name_prefix_torch | |
): train_steps, | |
} | |
for layer_idx in range(3): | |
map_dict_local.update( | |
{ | |
"{}.resnet{}_dense.weight".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_dense/kernel".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": (2, 1, 0) if layer_idx == 0 else (1, 0), | |
}, | |
"{}.resnet{}_dense.bias".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_dense/bias".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.weight".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/gamma".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.bias".format(tensor_name_prefix_torch, layer_idx): { | |
"name": "{}/resnet{}_bn/beta".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.running_mean".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/moving_mean".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.running_var".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/moving_variance".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.num_batches_tracked".format( | |
tensor_name_prefix_torch, layer_idx | |
): train_steps, | |
} | |
) | |
for block_idx in range(len(self.layers_in_block)): | |
for layer_idx in range(self.layers_in_block[block_idx]): | |
for i in ["1", "2", "_sc"]: | |
map_dict_local.update( | |
{ | |
"{}.block_{}.layer_{}.conv{}.weight".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/conv{}/kernel".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1), | |
}, | |
"{}.block_{}.layer_{}.bn{}.weight".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/gamma".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.bias".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/beta".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.running_mean".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/moving_mean".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.running_var".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/moving_variance".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.num_batches_tracked".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): train_steps, | |
} | |
) | |
return map_dict_local | |
def convert_tf2torch( | |
self, | |
var_dict_tf, | |
var_dict_torch, | |
): | |
map_dict = self.gen_tf2torch_map_dict() | |
var_dict_torch_update = dict() | |
for name in sorted(var_dict_torch.keys(), reverse=False): | |
if name.startswith(self.tf2torch_tensor_name_prefix_torch): | |
if name in map_dict: | |
if "num_batches_tracked" not in name: | |
name_tf = map_dict[name]["name"] | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name]["squeeze"] is not None: | |
data_tf = np.squeeze( | |
data_tf, axis=map_dict[name]["squeeze"] | |
) | |
if map_dict[name]["transpose"] is not None: | |
data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
data_tf = ( | |
torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
) | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, | |
data_tf.size(), | |
name_tf, | |
var_dict_tf[name_tf].shape, | |
) | |
) | |
else: | |
var_dict_torch_update[name] = ( | |
torch.Tensor(map_dict[name]).type(torch.int64).to("cpu") | |
) | |
logging.info( | |
"torch tensor: {}, manually assigning to: {}".format( | |
name, map_dict[name] | |
) | |
) | |
else: | |
logging.warning("{} is missed from tf checkpoint".format(name)) | |
return var_dict_torch_update | |
class ResNet34Diar(ResNet34): | |
def __init__( | |
self, | |
input_size, | |
embedding_node="resnet1_dense", | |
use_head_conv=True, | |
batchnorm_momentum=0.5, | |
use_head_maxpool=False, | |
num_nodes_pooling_layer=256, | |
layers_in_block=(3, 4, 6, 3), | |
filters_in_block=(32, 64, 128, 256), | |
num_nodes_resnet1=256, | |
num_nodes_last_layer=256, | |
pooling_type="window_shift", | |
pool_size=20, | |
stride=1, | |
tf2torch_tensor_name_prefix_torch="encoder", | |
tf2torch_tensor_name_prefix_tf="seq2seq/speech_encoder", | |
): | |
""" | |
Author: Speech Lab, Alibaba Group, China | |
SOND: Speaker Overlap-aware Neural Diarization for Multi-party Meeting Analysis | |
https://arxiv.org/abs/2211.10243 | |
""" | |
super(ResNet34Diar, self).__init__( | |
input_size, | |
use_head_conv=use_head_conv, | |
batchnorm_momentum=batchnorm_momentum, | |
use_head_maxpool=use_head_maxpool, | |
num_nodes_pooling_layer=num_nodes_pooling_layer, | |
layers_in_block=layers_in_block, | |
filters_in_block=filters_in_block, | |
) | |
self.embedding_node = embedding_node | |
self.num_nodes_resnet1 = num_nodes_resnet1 | |
self.num_nodes_last_layer = num_nodes_last_layer | |
self.pooling_type = pooling_type | |
self.pool_size = pool_size | |
self.stride = stride | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
self.resnet1_dense = torch.nn.Linear( | |
num_nodes_pooling_layer * 2, num_nodes_resnet1 | |
) | |
self.resnet1_bn = torch.nn.BatchNorm1d( | |
num_nodes_resnet1, eps=1e-3, momentum=batchnorm_momentum | |
) | |
self.resnet2_dense = torch.nn.Linear(num_nodes_resnet1, num_nodes_last_layer) | |
self.resnet2_bn = torch.nn.BatchNorm1d( | |
num_nodes_last_layer, eps=1e-3, momentum=batchnorm_momentum | |
) | |
def output_size(self) -> int: | |
if self.embedding_node.startswith("resnet1"): | |
return self.num_nodes_resnet1 | |
elif self.embedding_node.startswith("resnet2"): | |
return self.num_nodes_last_layer | |
return self.num_nodes_pooling_layer | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
endpoints = OrderedDict() | |
res_out, ilens = super().forward(xs_pad, ilens) | |
endpoints["resnet0_bn"] = res_out | |
if self.pooling_type == "frame_gsp": | |
features = statistic_pooling(res_out, ilens, (3,)) | |
else: | |
features, ilens = windowed_statistic_pooling( | |
res_out, ilens, (2, 3), self.pool_size, self.stride | |
) | |
features = features.transpose(1, 2) | |
endpoints["pooling"] = features | |
features = self.resnet1_dense(features) | |
endpoints["resnet1_dense"] = features | |
features = F.relu(features) | |
endpoints["resnet1_relu"] = features | |
features = self.resnet1_bn(features.transpose(1, 2)).transpose(1, 2) | |
endpoints["resnet1_bn"] = features | |
features = self.resnet2_dense(features) | |
endpoints["resnet2_dense"] = features | |
features = F.relu(features) | |
endpoints["resnet2_relu"] = features | |
features = self.resnet2_bn(features.transpose(1, 2)).transpose(1, 2) | |
endpoints["resnet2_bn"] = features | |
return endpoints[self.embedding_node], ilens, None | |
def gen_tf2torch_map_dict(self): | |
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
train_steps = 300000 | |
map_dict_local = { | |
# torch: conv1d.weight in "out_channel in_channel kernel_size" | |
# tf : conv1d.weight in "kernel_size in_channel out_channel" | |
# torch: linear.weight in "out_channel in_channel" | |
# tf : dense.weight in "in_channel out_channel" | |
"{}.pre_conv.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv/kernel".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1), | |
}, | |
"{}.pre_conv_bn.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/beta".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/gamma".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.running_mean".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/moving_mean".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.running_var".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/moving_variance".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.num_batches_tracked".format( | |
tensor_name_prefix_torch | |
): train_steps, | |
} | |
for layer_idx in range(3): | |
map_dict_local.update( | |
{ | |
"{}.resnet{}_dense.weight".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_dense/kernel".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1) if layer_idx == 0 else (1, 0), | |
}, | |
"{}.resnet{}_dense.bias".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_dense/bias".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.weight".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/gamma".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.bias".format(tensor_name_prefix_torch, layer_idx): { | |
"name": "{}/resnet{}_bn/beta".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.running_mean".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/moving_mean".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.running_var".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/moving_variance".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.num_batches_tracked".format( | |
tensor_name_prefix_torch, layer_idx | |
): train_steps, | |
} | |
) | |
for block_idx in range(len(self.layers_in_block)): | |
for layer_idx in range(self.layers_in_block[block_idx]): | |
for i in ["1", "2", "_sc"]: | |
map_dict_local.update( | |
{ | |
"{}.block_{}.layer_{}.conv{}.weight".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/conv{}/kernel".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1), | |
}, | |
"{}.block_{}.layer_{}.bn{}.weight".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/gamma".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.bias".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/beta".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.running_mean".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/moving_mean".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.running_var".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/moving_variance".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.num_batches_tracked".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): train_steps, | |
} | |
) | |
return map_dict_local | |
def convert_tf2torch( | |
self, | |
var_dict_tf, | |
var_dict_torch, | |
): | |
map_dict = self.gen_tf2torch_map_dict() | |
var_dict_torch_update = dict() | |
for name in sorted(var_dict_torch.keys(), reverse=False): | |
if name.startswith(self.tf2torch_tensor_name_prefix_torch): | |
if name in map_dict: | |
if "num_batches_tracked" not in name: | |
name_tf = map_dict[name]["name"] | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name]["squeeze"] is not None: | |
data_tf = np.squeeze( | |
data_tf, axis=map_dict[name]["squeeze"] | |
) | |
if map_dict[name]["transpose"] is not None: | |
data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
data_tf = ( | |
torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
) | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, | |
data_tf.size(), | |
name_tf, | |
var_dict_tf[name_tf].shape, | |
) | |
) | |
else: | |
var_dict_torch_update[name] = ( | |
torch.Tensor(map_dict[name]).type(torch.int64).to("cpu") | |
) | |
logging.info( | |
"torch tensor: {}, manually assigning to: {}".format( | |
name, map_dict[name] | |
) | |
) | |
else: | |
logging.warning("{} is missed from tf checkpoint".format(name)) | |
return var_dict_torch_update | |
class ResNet34SpL2RegDiar(ResNet34_SP_L2Reg): | |
def __init__( | |
self, | |
input_size, | |
embedding_node="resnet1_dense", | |
use_head_conv=True, | |
batchnorm_momentum=0.5, | |
use_head_maxpool=False, | |
num_nodes_pooling_layer=256, | |
layers_in_block=(3, 4, 6, 3), | |
filters_in_block=(32, 64, 128, 256), | |
num_nodes_resnet1=256, | |
num_nodes_last_layer=256, | |
pooling_type="window_shift", | |
pool_size=20, | |
stride=1, | |
tf2torch_tensor_name_prefix_torch="encoder", | |
tf2torch_tensor_name_prefix_tf="seq2seq/speech_encoder", | |
): | |
""" | |
Author: Speech Lab, Alibaba Group, China | |
TOLD: A Novel Two-Stage Overlap-Aware Framework for Speaker Diarization | |
https://arxiv.org/abs/2303.05397 | |
""" | |
super(ResNet34SpL2RegDiar, self).__init__( | |
input_size, | |
use_head_conv=use_head_conv, | |
batchnorm_momentum=batchnorm_momentum, | |
use_head_maxpool=use_head_maxpool, | |
num_nodes_pooling_layer=num_nodes_pooling_layer, | |
layers_in_block=layers_in_block, | |
filters_in_block=filters_in_block, | |
) | |
self.embedding_node = embedding_node | |
self.num_nodes_resnet1 = num_nodes_resnet1 | |
self.num_nodes_last_layer = num_nodes_last_layer | |
self.pooling_type = pooling_type | |
self.pool_size = pool_size | |
self.stride = stride | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
self.resnet1_dense = torch.nn.Linear( | |
num_nodes_pooling_layer * 2, num_nodes_resnet1 | |
) | |
self.resnet1_bn = torch.nn.BatchNorm1d( | |
num_nodes_resnet1, eps=1e-3, momentum=batchnorm_momentum | |
) | |
self.resnet2_dense = torch.nn.Linear(num_nodes_resnet1, num_nodes_last_layer) | |
self.resnet2_bn = torch.nn.BatchNorm1d( | |
num_nodes_last_layer, eps=1e-3, momentum=batchnorm_momentum | |
) | |
def output_size(self) -> int: | |
if self.embedding_node.startswith("resnet1"): | |
return self.num_nodes_resnet1 | |
elif self.embedding_node.startswith("resnet2"): | |
return self.num_nodes_last_layer | |
return self.num_nodes_pooling_layer | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
endpoints = OrderedDict() | |
res_out, ilens = super().forward(xs_pad, ilens) | |
endpoints["resnet0_bn"] = res_out | |
if self.pooling_type == "frame_gsp": | |
features = statistic_pooling(res_out, ilens, (2,)) | |
else: | |
features, ilens = windowed_statistic_pooling( | |
res_out, ilens, (2,), self.pool_size, self.stride | |
) | |
features = features.transpose(1, 2) | |
endpoints["pooling"] = features | |
features = self.resnet1_dense(features) | |
endpoints["resnet1_dense"] = features | |
features = F.relu(features) | |
endpoints["resnet1_relu"] = features | |
features = self.resnet1_bn(features.transpose(1, 2)).transpose(1, 2) | |
endpoints["resnet1_bn"] = features | |
features = self.resnet2_dense(features) | |
endpoints["resnet2_dense"] = features | |
features = F.relu(features) | |
endpoints["resnet2_relu"] = features | |
features = self.resnet2_bn(features.transpose(1, 2)).transpose(1, 2) | |
endpoints["resnet2_bn"] = features | |
return endpoints[self.embedding_node], ilens, None | |
def gen_tf2torch_map_dict(self): | |
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
train_steps = 720000 | |
map_dict_local = { | |
# torch: conv1d.weight in "out_channel in_channel kernel_size" | |
# tf : conv1d.weight in "kernel_size in_channel out_channel" | |
# torch: linear.weight in "out_channel in_channel" | |
# tf : dense.weight in "in_channel out_channel" | |
"{}.pre_conv.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv/kernel".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1), | |
}, | |
"{}.pre_conv_bn.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/beta".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/gamma".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.running_mean".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/moving_mean".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.running_var".format(tensor_name_prefix_torch): { | |
"name": "{}/pre_conv_bn/moving_variance".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.pre_conv_bn.num_batches_tracked".format( | |
tensor_name_prefix_torch | |
): train_steps, | |
} | |
for layer_idx in range(3): | |
map_dict_local.update( | |
{ | |
"{}.resnet{}_dense.weight".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_dense/kernel".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": (2, 1, 0) if layer_idx == 0 else (1, 0), | |
}, | |
"{}.resnet{}_dense.bias".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_dense/bias".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.weight".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/gamma".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.bias".format(tensor_name_prefix_torch, layer_idx): { | |
"name": "{}/resnet{}_bn/beta".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.running_mean".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/moving_mean".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.running_var".format( | |
tensor_name_prefix_torch, layer_idx | |
): { | |
"name": "{}/resnet{}_bn/moving_variance".format( | |
tensor_name_prefix_tf, layer_idx | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.resnet{}_bn.num_batches_tracked".format( | |
tensor_name_prefix_torch, layer_idx | |
): train_steps, | |
} | |
) | |
for block_idx in range(len(self.layers_in_block)): | |
for layer_idx in range(self.layers_in_block[block_idx]): | |
for i in ["1", "2", "_sc"]: | |
map_dict_local.update( | |
{ | |
"{}.block_{}.layer_{}.conv{}.weight".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/conv{}/kernel".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": (3, 2, 0, 1), | |
}, | |
"{}.block_{}.layer_{}.bn{}.weight".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/gamma".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.bias".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/beta".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.running_mean".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/moving_mean".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.running_var".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): { | |
"name": "{}/block_{}/layer_{}/bn{}/moving_variance".format( | |
tensor_name_prefix_tf, block_idx, layer_idx, i | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.block_{}.layer_{}.bn{}.num_batches_tracked".format( | |
tensor_name_prefix_torch, block_idx, layer_idx, i | |
): train_steps, | |
} | |
) | |
return map_dict_local | |
def convert_tf2torch( | |
self, | |
var_dict_tf, | |
var_dict_torch, | |
): | |
map_dict = self.gen_tf2torch_map_dict() | |
var_dict_torch_update = dict() | |
for name in sorted(var_dict_torch.keys(), reverse=False): | |
if name.startswith(self.tf2torch_tensor_name_prefix_torch): | |
if name in map_dict: | |
if "num_batches_tracked" not in name: | |
name_tf = map_dict[name]["name"] | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name]["squeeze"] is not None: | |
data_tf = np.squeeze( | |
data_tf, axis=map_dict[name]["squeeze"] | |
) | |
if map_dict[name]["transpose"] is not None: | |
data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
data_tf = ( | |
torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
) | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, | |
data_tf.size(), | |
name_tf, | |
var_dict_tf[name_tf].shape, | |
) | |
) | |
else: | |
var_dict_torch_update[name] = ( | |
torch.from_numpy(np.array(map_dict[name])) | |
.type(torch.int64) | |
.to("cpu") | |
) | |
logging.info( | |
"torch tensor: {}, manually assigning to: {}".format( | |
name, map_dict[name] | |
) | |
) | |
else: | |
logging.warning("{} is missed from tf checkpoint".format(name)) | |
return var_dict_torch_update | |