mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
47.3 kB
import torch
from torch.nn import functional as F
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
from typing import Tuple, Optional
from funasr_detach.models.pooling.statistic_pooling import (
statistic_pooling,
windowed_statistic_pooling,
)
from collections import OrderedDict
import logging
import numpy as np
class BasicLayer(torch.nn.Module):
def __init__(
self, in_filters: int, filters: int, stride: int, bn_momentum: float = 0.5
):
super().__init__()
self.stride = stride
self.in_filters = in_filters
self.filters = filters
self.bn1 = torch.nn.BatchNorm2d(
in_filters, eps=1e-3, momentum=bn_momentum, affine=True
)
self.relu1 = torch.nn.ReLU()
self.conv1 = torch.nn.Conv2d(in_filters, filters, 3, stride, bias=False)
self.bn2 = torch.nn.BatchNorm2d(
filters, eps=1e-3, momentum=bn_momentum, affine=True
)
self.relu2 = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(filters, filters, 3, 1, bias=False)
if in_filters != filters or stride > 1:
self.conv_sc = torch.nn.Conv2d(in_filters, filters, 1, stride, bias=False)
self.bn_sc = torch.nn.BatchNorm2d(
filters, eps=1e-3, momentum=bn_momentum, affine=True
)
def proper_padding(self, x, stride):
# align padding mode to tf.layers.conv2d with padding_mod="same"
if stride == 1:
return F.pad(x, (1, 1, 1, 1), "constant", 0)
elif stride == 2:
h, w = x.size(2), x.size(3)
# (left, right, top, bottom)
return F.pad(x, (w % 2, 1, h % 2, 1), "constant", 0)
def forward(self, xs_pad, ilens):
identity = xs_pad
if self.in_filters != self.filters or self.stride > 1:
identity = self.conv_sc(identity)
identity = self.bn_sc(identity)
xs_pad = self.relu1(self.bn1(xs_pad))
xs_pad = self.proper_padding(xs_pad, self.stride)
xs_pad = self.conv1(xs_pad)
xs_pad = self.relu2(self.bn2(xs_pad))
xs_pad = self.proper_padding(xs_pad, 1)
xs_pad = self.conv2(xs_pad)
if self.stride == 2:
ilens = (ilens + 1) // self.stride
return xs_pad + identity, ilens
class BasicBlock(torch.nn.Module):
def __init__(self, in_filters, filters, num_layer, stride, bn_momentum=0.5):
super().__init__()
self.num_layer = num_layer
for i in range(num_layer):
layer = BasicLayer(
in_filters if i == 0 else filters,
filters,
stride if i == 0 else 1,
bn_momentum,
)
self.add_module("layer_{}".format(i), layer)
def forward(self, xs_pad, ilens):
for i in range(self.num_layer):
xs_pad, ilens = self._modules["layer_{}".format(i)](xs_pad, ilens)
return xs_pad, ilens
class ResNet34(AbsEncoder):
def __init__(
self,
input_size,
use_head_conv=True,
batchnorm_momentum=0.5,
use_head_maxpool=False,
num_nodes_pooling_layer=256,
layers_in_block=(3, 4, 6, 3),
filters_in_block=(32, 64, 128, 256),
):
super(ResNet34, self).__init__()
self.use_head_conv = use_head_conv
self.use_head_maxpool = use_head_maxpool
self.num_nodes_pooling_layer = num_nodes_pooling_layer
self.layers_in_block = layers_in_block
self.filters_in_block = filters_in_block
self.input_size = input_size
pre_filters = filters_in_block[0]
if use_head_conv:
self.pre_conv = torch.nn.Conv2d(
1, pre_filters, 3, 1, 1, bias=False, padding_mode="zeros"
)
self.pre_conv_bn = torch.nn.BatchNorm2d(
pre_filters, eps=1e-3, momentum=batchnorm_momentum
)
if use_head_maxpool:
self.head_maxpool = torch.nn.MaxPool2d(3, 1, padding=1)
for i in range(len(layers_in_block)):
if i == 0:
in_filters = pre_filters if self.use_head_conv else 1
else:
in_filters = filters_in_block[i - 1]
block = BasicBlock(
in_filters,
filters=filters_in_block[i],
num_layer=layers_in_block[i],
stride=1 if i == 0 else 2,
bn_momentum=batchnorm_momentum,
)
self.add_module("block_{}".format(i), block)
self.resnet0_dense = torch.nn.Conv2d(
filters_in_block[-1], num_nodes_pooling_layer, 1
)
self.resnet0_bn = torch.nn.BatchNorm2d(
num_nodes_pooling_layer, eps=1e-3, momentum=batchnorm_momentum
)
self.time_ds_ratio = 8
def output_size(self) -> int:
return self.num_nodes_pooling_layer
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
features = xs_pad
assert (
features.size(-1) == self.input_size
), "Dimension of features {} doesn't match the input_size {}.".format(
features.size(-1), self.input_size
)
features = torch.unsqueeze(features, dim=1)
if self.use_head_conv:
features = self.pre_conv(features)
features = self.pre_conv_bn(features)
features = F.relu(features)
if self.use_head_maxpool:
features = self.head_maxpool(features)
resnet_outs, resnet_out_lens = features, ilens
for i in range(len(self.layers_in_block)):
block = self._modules["block_{}".format(i)]
resnet_outs, resnet_out_lens = block(resnet_outs, resnet_out_lens)
features = self.resnet0_dense(resnet_outs)
features = F.relu(features)
features = self.resnet0_bn(features)
return features, resnet_out_lens
# Note: For training, this implement is not equivalent to tf because of the kernel_regularizer in tf.layers.
# TODO: implement kernel_regularizer in torch with munal loss addition or weigth_decay in the optimizer
class ResNet34_SP_L2Reg(AbsEncoder):
def __init__(
self,
input_size,
use_head_conv=True,
batchnorm_momentum=0.5,
use_head_maxpool=False,
num_nodes_pooling_layer=256,
layers_in_block=(3, 4, 6, 3),
filters_in_block=(32, 64, 128, 256),
tf2torch_tensor_name_prefix_torch="encoder",
tf2torch_tensor_name_prefix_tf="EAND/speech_encoder",
tf_train_steps=720000,
):
super(ResNet34_SP_L2Reg, self).__init__()
self.use_head_conv = use_head_conv
self.use_head_maxpool = use_head_maxpool
self.num_nodes_pooling_layer = num_nodes_pooling_layer
self.layers_in_block = layers_in_block
self.filters_in_block = filters_in_block
self.input_size = input_size
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.tf_train_steps = tf_train_steps
pre_filters = filters_in_block[0]
if use_head_conv:
self.pre_conv = torch.nn.Conv2d(
1, pre_filters, 3, 1, 1, bias=False, padding_mode="zeros"
)
self.pre_conv_bn = torch.nn.BatchNorm2d(
pre_filters, eps=1e-3, momentum=batchnorm_momentum
)
if use_head_maxpool:
self.head_maxpool = torch.nn.MaxPool2d(3, 1, padding=1)
for i in range(len(layers_in_block)):
if i == 0:
in_filters = pre_filters if self.use_head_conv else 1
else:
in_filters = filters_in_block[i - 1]
block = BasicBlock(
in_filters,
filters=filters_in_block[i],
num_layer=layers_in_block[i],
stride=1 if i == 0 else 2,
bn_momentum=batchnorm_momentum,
)
self.add_module("block_{}".format(i), block)
self.resnet0_dense = torch.nn.Conv1d(
filters_in_block[-1] * input_size // 8, num_nodes_pooling_layer, 1
)
self.resnet0_bn = torch.nn.BatchNorm1d(
num_nodes_pooling_layer, eps=1e-3, momentum=batchnorm_momentum
)
self.time_ds_ratio = 8
def output_size(self) -> int:
return self.num_nodes_pooling_layer
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
features = xs_pad
assert (
features.size(-1) == self.input_size
), "Dimension of features {} doesn't match the input_size {}.".format(
features.size(-1), self.input_size
)
features = torch.unsqueeze(features, dim=1)
if self.use_head_conv:
features = self.pre_conv(features)
features = self.pre_conv_bn(features)
features = F.relu(features)
if self.use_head_maxpool:
features = self.head_maxpool(features)
resnet_outs, resnet_out_lens = features, ilens
for i in range(len(self.layers_in_block)):
block = self._modules["block_{}".format(i)]
resnet_outs, resnet_out_lens = block(resnet_outs, resnet_out_lens)
# B, C, T, F
bb, cc, tt, ff = resnet_outs.shape
resnet_outs = torch.reshape(resnet_outs.permute(0, 3, 1, 2), [bb, ff * cc, tt])
features = self.resnet0_dense(resnet_outs)
features = F.relu(features)
features = self.resnet0_bn(features)
return features, resnet_out_lens
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
train_steps = self.tf_train_steps
map_dict_local = {
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.pre_conv.weight".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (3, 2, 0, 1),
},
"{}.pre_conv_bn.bias".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.weight".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.running_mean".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/moving_mean".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.running_var".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/moving_variance".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.num_batches_tracked".format(
tensor_name_prefix_torch
): train_steps,
}
for layer_idx in range(3):
map_dict_local.update(
{
"{}.resnet{}_dense.weight".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_dense/kernel".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": (2, 1, 0) if layer_idx == 0 else (1, 0),
},
"{}.resnet{}_dense.bias".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_dense/bias".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.weight".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/gamma".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.bias".format(tensor_name_prefix_torch, layer_idx): {
"name": "{}/resnet{}_bn/beta".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.running_mean".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/moving_mean".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.running_var".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/moving_variance".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.num_batches_tracked".format(
tensor_name_prefix_torch, layer_idx
): train_steps,
}
)
for block_idx in range(len(self.layers_in_block)):
for layer_idx in range(self.layers_in_block[block_idx]):
for i in ["1", "2", "_sc"]:
map_dict_local.update(
{
"{}.block_{}.layer_{}.conv{}.weight".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/conv{}/kernel".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": (3, 2, 0, 1),
},
"{}.block_{}.layer_{}.bn{}.weight".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/gamma".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.bias".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/beta".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.running_mean".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/moving_mean".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.running_var".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/moving_variance".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.num_batches_tracked".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): train_steps,
}
)
return map_dict_local
def convert_tf2torch(
self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
if name in map_dict:
if "num_batches_tracked" not in name:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(
data_tf, axis=map_dict[name]["squeeze"]
)
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = (
torch.from_numpy(data_tf).type(torch.float32).to("cpu")
)
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name,
data_tf.size(),
name_tf,
var_dict_tf[name_tf].shape,
)
)
else:
var_dict_torch_update[name] = (
torch.Tensor(map_dict[name]).type(torch.int64).to("cpu")
)
logging.info(
"torch tensor: {}, manually assigning to: {}".format(
name, map_dict[name]
)
)
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update
class ResNet34Diar(ResNet34):
def __init__(
self,
input_size,
embedding_node="resnet1_dense",
use_head_conv=True,
batchnorm_momentum=0.5,
use_head_maxpool=False,
num_nodes_pooling_layer=256,
layers_in_block=(3, 4, 6, 3),
filters_in_block=(32, 64, 128, 256),
num_nodes_resnet1=256,
num_nodes_last_layer=256,
pooling_type="window_shift",
pool_size=20,
stride=1,
tf2torch_tensor_name_prefix_torch="encoder",
tf2torch_tensor_name_prefix_tf="seq2seq/speech_encoder",
):
"""
Author: Speech Lab, Alibaba Group, China
SOND: Speaker Overlap-aware Neural Diarization for Multi-party Meeting Analysis
https://arxiv.org/abs/2211.10243
"""
super(ResNet34Diar, self).__init__(
input_size,
use_head_conv=use_head_conv,
batchnorm_momentum=batchnorm_momentum,
use_head_maxpool=use_head_maxpool,
num_nodes_pooling_layer=num_nodes_pooling_layer,
layers_in_block=layers_in_block,
filters_in_block=filters_in_block,
)
self.embedding_node = embedding_node
self.num_nodes_resnet1 = num_nodes_resnet1
self.num_nodes_last_layer = num_nodes_last_layer
self.pooling_type = pooling_type
self.pool_size = pool_size
self.stride = stride
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.resnet1_dense = torch.nn.Linear(
num_nodes_pooling_layer * 2, num_nodes_resnet1
)
self.resnet1_bn = torch.nn.BatchNorm1d(
num_nodes_resnet1, eps=1e-3, momentum=batchnorm_momentum
)
self.resnet2_dense = torch.nn.Linear(num_nodes_resnet1, num_nodes_last_layer)
self.resnet2_bn = torch.nn.BatchNorm1d(
num_nodes_last_layer, eps=1e-3, momentum=batchnorm_momentum
)
def output_size(self) -> int:
if self.embedding_node.startswith("resnet1"):
return self.num_nodes_resnet1
elif self.embedding_node.startswith("resnet2"):
return self.num_nodes_last_layer
return self.num_nodes_pooling_layer
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
endpoints = OrderedDict()
res_out, ilens = super().forward(xs_pad, ilens)
endpoints["resnet0_bn"] = res_out
if self.pooling_type == "frame_gsp":
features = statistic_pooling(res_out, ilens, (3,))
else:
features, ilens = windowed_statistic_pooling(
res_out, ilens, (2, 3), self.pool_size, self.stride
)
features = features.transpose(1, 2)
endpoints["pooling"] = features
features = self.resnet1_dense(features)
endpoints["resnet1_dense"] = features
features = F.relu(features)
endpoints["resnet1_relu"] = features
features = self.resnet1_bn(features.transpose(1, 2)).transpose(1, 2)
endpoints["resnet1_bn"] = features
features = self.resnet2_dense(features)
endpoints["resnet2_dense"] = features
features = F.relu(features)
endpoints["resnet2_relu"] = features
features = self.resnet2_bn(features.transpose(1, 2)).transpose(1, 2)
endpoints["resnet2_bn"] = features
return endpoints[self.embedding_node], ilens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
train_steps = 300000
map_dict_local = {
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.pre_conv.weight".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (3, 2, 0, 1),
},
"{}.pre_conv_bn.bias".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.weight".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.running_mean".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/moving_mean".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.running_var".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/moving_variance".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.num_batches_tracked".format(
tensor_name_prefix_torch
): train_steps,
}
for layer_idx in range(3):
map_dict_local.update(
{
"{}.resnet{}_dense.weight".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_dense/kernel".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": (3, 2, 0, 1) if layer_idx == 0 else (1, 0),
},
"{}.resnet{}_dense.bias".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_dense/bias".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.weight".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/gamma".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.bias".format(tensor_name_prefix_torch, layer_idx): {
"name": "{}/resnet{}_bn/beta".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.running_mean".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/moving_mean".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.running_var".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/moving_variance".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.num_batches_tracked".format(
tensor_name_prefix_torch, layer_idx
): train_steps,
}
)
for block_idx in range(len(self.layers_in_block)):
for layer_idx in range(self.layers_in_block[block_idx]):
for i in ["1", "2", "_sc"]:
map_dict_local.update(
{
"{}.block_{}.layer_{}.conv{}.weight".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/conv{}/kernel".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": (3, 2, 0, 1),
},
"{}.block_{}.layer_{}.bn{}.weight".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/gamma".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.bias".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/beta".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.running_mean".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/moving_mean".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.running_var".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/moving_variance".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.num_batches_tracked".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): train_steps,
}
)
return map_dict_local
def convert_tf2torch(
self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
if name in map_dict:
if "num_batches_tracked" not in name:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(
data_tf, axis=map_dict[name]["squeeze"]
)
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = (
torch.from_numpy(data_tf).type(torch.float32).to("cpu")
)
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name,
data_tf.size(),
name_tf,
var_dict_tf[name_tf].shape,
)
)
else:
var_dict_torch_update[name] = (
torch.Tensor(map_dict[name]).type(torch.int64).to("cpu")
)
logging.info(
"torch tensor: {}, manually assigning to: {}".format(
name, map_dict[name]
)
)
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update
class ResNet34SpL2RegDiar(ResNet34_SP_L2Reg):
def __init__(
self,
input_size,
embedding_node="resnet1_dense",
use_head_conv=True,
batchnorm_momentum=0.5,
use_head_maxpool=False,
num_nodes_pooling_layer=256,
layers_in_block=(3, 4, 6, 3),
filters_in_block=(32, 64, 128, 256),
num_nodes_resnet1=256,
num_nodes_last_layer=256,
pooling_type="window_shift",
pool_size=20,
stride=1,
tf2torch_tensor_name_prefix_torch="encoder",
tf2torch_tensor_name_prefix_tf="seq2seq/speech_encoder",
):
"""
Author: Speech Lab, Alibaba Group, China
TOLD: A Novel Two-Stage Overlap-Aware Framework for Speaker Diarization
https://arxiv.org/abs/2303.05397
"""
super(ResNet34SpL2RegDiar, self).__init__(
input_size,
use_head_conv=use_head_conv,
batchnorm_momentum=batchnorm_momentum,
use_head_maxpool=use_head_maxpool,
num_nodes_pooling_layer=num_nodes_pooling_layer,
layers_in_block=layers_in_block,
filters_in_block=filters_in_block,
)
self.embedding_node = embedding_node
self.num_nodes_resnet1 = num_nodes_resnet1
self.num_nodes_last_layer = num_nodes_last_layer
self.pooling_type = pooling_type
self.pool_size = pool_size
self.stride = stride
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.resnet1_dense = torch.nn.Linear(
num_nodes_pooling_layer * 2, num_nodes_resnet1
)
self.resnet1_bn = torch.nn.BatchNorm1d(
num_nodes_resnet1, eps=1e-3, momentum=batchnorm_momentum
)
self.resnet2_dense = torch.nn.Linear(num_nodes_resnet1, num_nodes_last_layer)
self.resnet2_bn = torch.nn.BatchNorm1d(
num_nodes_last_layer, eps=1e-3, momentum=batchnorm_momentum
)
def output_size(self) -> int:
if self.embedding_node.startswith("resnet1"):
return self.num_nodes_resnet1
elif self.embedding_node.startswith("resnet2"):
return self.num_nodes_last_layer
return self.num_nodes_pooling_layer
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
endpoints = OrderedDict()
res_out, ilens = super().forward(xs_pad, ilens)
endpoints["resnet0_bn"] = res_out
if self.pooling_type == "frame_gsp":
features = statistic_pooling(res_out, ilens, (2,))
else:
features, ilens = windowed_statistic_pooling(
res_out, ilens, (2,), self.pool_size, self.stride
)
features = features.transpose(1, 2)
endpoints["pooling"] = features
features = self.resnet1_dense(features)
endpoints["resnet1_dense"] = features
features = F.relu(features)
endpoints["resnet1_relu"] = features
features = self.resnet1_bn(features.transpose(1, 2)).transpose(1, 2)
endpoints["resnet1_bn"] = features
features = self.resnet2_dense(features)
endpoints["resnet2_dense"] = features
features = F.relu(features)
endpoints["resnet2_relu"] = features
features = self.resnet2_bn(features.transpose(1, 2)).transpose(1, 2)
endpoints["resnet2_bn"] = features
return endpoints[self.embedding_node], ilens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
train_steps = 720000
map_dict_local = {
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.pre_conv.weight".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (3, 2, 0, 1),
},
"{}.pre_conv_bn.bias".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.weight".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.running_mean".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/moving_mean".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.running_var".format(tensor_name_prefix_torch): {
"name": "{}/pre_conv_bn/moving_variance".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.pre_conv_bn.num_batches_tracked".format(
tensor_name_prefix_torch
): train_steps,
}
for layer_idx in range(3):
map_dict_local.update(
{
"{}.resnet{}_dense.weight".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_dense/kernel".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": (2, 1, 0) if layer_idx == 0 else (1, 0),
},
"{}.resnet{}_dense.bias".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_dense/bias".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.weight".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/gamma".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.bias".format(tensor_name_prefix_torch, layer_idx): {
"name": "{}/resnet{}_bn/beta".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.running_mean".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/moving_mean".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.running_var".format(
tensor_name_prefix_torch, layer_idx
): {
"name": "{}/resnet{}_bn/moving_variance".format(
tensor_name_prefix_tf, layer_idx
),
"squeeze": None,
"transpose": None,
},
"{}.resnet{}_bn.num_batches_tracked".format(
tensor_name_prefix_torch, layer_idx
): train_steps,
}
)
for block_idx in range(len(self.layers_in_block)):
for layer_idx in range(self.layers_in_block[block_idx]):
for i in ["1", "2", "_sc"]:
map_dict_local.update(
{
"{}.block_{}.layer_{}.conv{}.weight".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/conv{}/kernel".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": (3, 2, 0, 1),
},
"{}.block_{}.layer_{}.bn{}.weight".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/gamma".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.bias".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/beta".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.running_mean".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/moving_mean".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.running_var".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): {
"name": "{}/block_{}/layer_{}/bn{}/moving_variance".format(
tensor_name_prefix_tf, block_idx, layer_idx, i
),
"squeeze": None,
"transpose": None,
},
"{}.block_{}.layer_{}.bn{}.num_batches_tracked".format(
tensor_name_prefix_torch, block_idx, layer_idx, i
): train_steps,
}
)
return map_dict_local
def convert_tf2torch(
self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
if name in map_dict:
if "num_batches_tracked" not in name:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(
data_tf, axis=map_dict[name]["squeeze"]
)
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = (
torch.from_numpy(data_tf).type(torch.float32).to("cpu")
)
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name,
data_tf.size(),
name_tf,
var_dict_tf[name_tf].shape,
)
)
else:
var_dict_torch_update[name] = (
torch.from_numpy(np.array(map_dict[name]))
.type(torch.int64)
.to("cpu")
)
logging.info(
"torch tensor: {}, manually assigning to: {}".format(
name, map_dict[name]
)
)
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update