mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
19.8 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class _BatchNorm1d(nn.Module):
def __init__(
self,
input_shape=None,
input_size=None,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True,
combine_batch_time=False,
skip_transpose=False,
):
super().__init__()
self.combine_batch_time = combine_batch_time
self.skip_transpose = skip_transpose
if input_size is None and skip_transpose:
input_size = input_shape[1]
elif input_size is None:
input_size = input_shape[-1]
self.norm = nn.BatchNorm1d(
input_size,
eps=eps,
momentum=momentum,
affine=affine,
track_running_stats=track_running_stats,
)
def forward(self, x):
shape_or = x.shape
if self.combine_batch_time:
if x.ndim == 3:
x = x.reshape(shape_or[0] * shape_or[1], shape_or[2])
else:
x = x.reshape(shape_or[0] * shape_or[1], shape_or[3], shape_or[2])
elif not self.skip_transpose:
x = x.transpose(-1, 1)
x_n = self.norm(x)
if self.combine_batch_time:
x_n = x_n.reshape(shape_or)
elif not self.skip_transpose:
x_n = x_n.transpose(1, -1)
return x_n
class _Conv1d(nn.Module):
def __init__(
self,
out_channels,
kernel_size,
input_shape=None,
in_channels=None,
stride=1,
dilation=1,
padding="same",
groups=1,
bias=True,
padding_mode="reflect",
skip_transpose=False,
):
super().__init__()
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.padding = padding
self.padding_mode = padding_mode
self.unsqueeze = False
self.skip_transpose = skip_transpose
if input_shape is None and in_channels is None:
raise ValueError("Must provide one of input_shape or in_channels")
if in_channels is None:
in_channels = self._check_input_shape(input_shape)
self.conv = nn.Conv1d(
in_channels,
out_channels,
self.kernel_size,
stride=self.stride,
dilation=self.dilation,
padding=0,
groups=groups,
bias=bias,
)
def forward(self, x):
if not self.skip_transpose:
x = x.transpose(1, -1)
if self.unsqueeze:
x = x.unsqueeze(1)
if self.padding == "same":
x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
elif self.padding == "causal":
num_pad = (self.kernel_size - 1) * self.dilation
x = F.pad(x, (num_pad, 0))
elif self.padding == "valid":
pass
else:
raise ValueError(
"Padding must be 'same', 'valid' or 'causal'. Got " + self.padding
)
wx = self.conv(x)
if self.unsqueeze:
wx = wx.squeeze(1)
if not self.skip_transpose:
wx = wx.transpose(1, -1)
return wx
def _manage_padding(
self,
x,
kernel_size: int,
dilation: int,
stride: int,
):
# Detecting input shape
L_in = x.shape[-1]
# Time padding
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
# Applying padding
x = F.pad(x, padding, mode=self.padding_mode)
return x
def _check_input_shape(self, shape):
"""Checks the input shape and returns the number of input channels."""
if len(shape) == 2:
self.unsqueeze = True
in_channels = 1
elif self.skip_transpose:
in_channels = shape[1]
elif len(shape) == 3:
in_channels = shape[2]
else:
raise ValueError("conv1d expects 2d, 3d inputs. Got " + str(len(shape)))
# Kernel size must be odd
if self.kernel_size % 2 == 0:
raise ValueError(
"The field kernel size must be an odd number. Got %s."
% (self.kernel_size)
)
return in_channels
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
if stride > 1:
n_steps = math.ceil(((L_in - kernel_size * dilation) / stride) + 1)
L_out = stride * (n_steps - 1) + kernel_size * dilation
padding = [kernel_size // 2, kernel_size // 2]
else:
L_out = (L_in - dilation * (kernel_size - 1) - 1) // stride + 1
padding = [(L_in - L_out) // 2, (L_in - L_out) // 2]
return padding
# Skip transpose as much as possible for efficiency
class Conv1d(_Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(skip_transpose=True, *args, **kwargs)
class BatchNorm1d(_BatchNorm1d):
def __init__(self, *args, **kwargs):
super().__init__(skip_transpose=True, *args, **kwargs)
def length_to_mask(length, max_len=None, dtype=None, device=None):
assert len(length.shape) == 1
if max_len is None:
max_len = length.max().long().item() # using arange to generate mask
mask = torch.arange(max_len, device=length.device, dtype=length.dtype).expand(
len(length), max_len
) < length.unsqueeze(1)
if dtype is None:
dtype = length.dtype
if device is None:
device = length.device
mask = torch.as_tensor(mask, dtype=dtype, device=device)
return mask
class TDNNBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
dilation,
activation=nn.ReLU,
groups=1,
):
super(TDNNBlock, self).__init__()
self.conv = Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation,
groups=groups,
)
self.activation = activation()
self.norm = BatchNorm1d(input_size=out_channels)
def forward(self, x):
return self.norm(self.activation(self.conv(x)))
class Res2NetBlock(torch.nn.Module):
"""An implementation of Res2NetBlock w/ dilation.
Arguments
---------
in_channels : int
The number of channels expected in the input.
out_channels : int
The number of output channels.
scale : int
The scale of the Res2Net block.
kernel_size: int
The kernel size of the Res2Net block.
dilation : int
The dilation of the Res2Net block.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> layer = Res2NetBlock(64, 64, scale=4, dilation=3)
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 120, 64])
"""
def __init__(self, in_channels, out_channels, scale=8, kernel_size=3, dilation=1):
super(Res2NetBlock, self).__init__()
assert in_channels % scale == 0
assert out_channels % scale == 0
in_channel = in_channels // scale
hidden_channel = out_channels // scale
self.blocks = nn.ModuleList(
[
TDNNBlock(
in_channel,
hidden_channel,
kernel_size=kernel_size,
dilation=dilation,
)
for i in range(scale - 1)
]
)
self.scale = scale
def forward(self, x):
y = []
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
if i == 0:
y_i = x_i
elif i == 1:
y_i = self.blocks[i - 1](x_i)
else:
y_i = self.blocks[i - 1](x_i + y_i)
y.append(y_i)
y = torch.cat(y, dim=1)
return y
class SEBlock(nn.Module):
"""An implementation of squeeze-and-excitation block.
Arguments
---------
in_channels : int
The number of input channels.
se_channels : int
The number of output channels after squeeze.
out_channels : int
The number of output channels.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> se_layer = SEBlock(64, 16, 64)
>>> lengths = torch.rand((8,))
>>> out_tensor = se_layer(inp_tensor, lengths).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 120, 64])
"""
def __init__(self, in_channels, se_channels, out_channels):
super(SEBlock, self).__init__()
self.conv1 = Conv1d(
in_channels=in_channels, out_channels=se_channels, kernel_size=1
)
self.relu = torch.nn.ReLU(inplace=True)
self.conv2 = Conv1d(
in_channels=se_channels, out_channels=out_channels, kernel_size=1
)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x, lengths=None):
L = x.shape[-1]
if lengths is not None:
mask = length_to_mask(lengths * L, max_len=L, device=x.device)
mask = mask.unsqueeze(1)
total = mask.sum(dim=2, keepdim=True)
s = (x * mask).sum(dim=2, keepdim=True) / total
else:
s = x.mean(dim=2, keepdim=True)
s = self.relu(self.conv1(s))
s = self.sigmoid(self.conv2(s))
return s * x
class AttentiveStatisticsPooling(nn.Module):
"""This class implements an attentive statistic pooling layer for each channel.
It returns the concatenated mean and std of the input tensor.
Arguments
---------
channels: int
The number of input channels.
attention_channels: int
The number of attention channels.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> asp_layer = AttentiveStatisticsPooling(64)
>>> lengths = torch.rand((8,))
>>> out_tensor = asp_layer(inp_tensor, lengths).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 1, 128])
"""
def __init__(self, channels, attention_channels=128, global_context=True):
super().__init__()
self.eps = 1e-12
self.global_context = global_context
if global_context:
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
else:
self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)
self.tanh = nn.Tanh()
self.conv = Conv1d(
in_channels=attention_channels, out_channels=channels, kernel_size=1
)
def forward(self, x, lengths=None):
"""Calculates mean and std for a batch (input tensor).
Arguments
---------
x : torch.Tensor
Tensor of shape [N, C, L].
"""
L = x.shape[-1]
def _compute_statistics(x, m, dim=2, eps=self.eps):
mean = (m * x).sum(dim)
std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
return mean, std
if lengths is None:
lengths = torch.ones(x.shape[0], device=x.device)
# Make binary mask of shape [N, 1, L]
mask = length_to_mask(lengths * L, max_len=L, device=x.device)
mask = mask.unsqueeze(1)
# Expand the temporal context of the pooling layer by allowing the
# self-attention to look at global properties of the utterance.
if self.global_context:
# torch.std is unstable for backward computation
# https://github.com/pytorch/pytorch/issues/4320
total = mask.sum(dim=2, keepdim=True).float()
mean, std = _compute_statistics(x, mask / total)
mean = mean.unsqueeze(2).repeat(1, 1, L)
std = std.unsqueeze(2).repeat(1, 1, L)
attn = torch.cat([x, mean, std], dim=1)
else:
attn = x
# Apply layers
attn = self.conv(self.tanh(self.tdnn(attn)))
# Filter out zero-paddings
attn = attn.masked_fill(mask == 0, float("-inf"))
attn = F.softmax(attn, dim=2)
mean, std = _compute_statistics(x, attn)
# Append mean and std of the batch
pooled_stats = torch.cat((mean, std), dim=1)
pooled_stats = pooled_stats.unsqueeze(2)
return pooled_stats
class SERes2NetBlock(nn.Module):
"""An implementation of building block in ECAPA-TDNN, i.e.,
TDNN-Res2Net-TDNN-SEBlock.
Arguments
----------
out_channels: int
The number of output channels.
res2net_scale: int
The scale of the Res2Net block.
kernel_size: int
The kernel size of the TDNN blocks.
dilation: int
The dilation of the Res2Net block.
activation : torch class
A class for constructing the activation layers.
groups: int
Number of blocked connections from input channels to output channels.
Example
-------
>>> x = torch.rand(8, 120, 64).transpose(1, 2)
>>> conv = SERes2NetBlock(64, 64, res2net_scale=4)
>>> out = conv(x).transpose(1, 2)
>>> out.shape
torch.Size([8, 120, 64])
"""
def __init__(
self,
in_channels,
out_channels,
res2net_scale=8,
se_channels=128,
kernel_size=1,
dilation=1,
activation=torch.nn.ReLU,
groups=1,
):
super().__init__()
self.out_channels = out_channels
self.tdnn1 = TDNNBlock(
in_channels,
out_channels,
kernel_size=1,
dilation=1,
activation=activation,
groups=groups,
)
self.res2net_block = Res2NetBlock(
out_channels, out_channels, res2net_scale, kernel_size, dilation
)
self.tdnn2 = TDNNBlock(
out_channels,
out_channels,
kernel_size=1,
dilation=1,
activation=activation,
groups=groups,
)
self.se_block = SEBlock(out_channels, se_channels, out_channels)
self.shortcut = None
if in_channels != out_channels:
self.shortcut = Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
def forward(self, x, lengths=None):
residual = x
if self.shortcut:
residual = self.shortcut(x)
x = self.tdnn1(x)
x = self.res2net_block(x)
x = self.tdnn2(x)
x = self.se_block(x, lengths)
return x + residual
class ECAPA_TDNN(torch.nn.Module):
"""An implementation of the speaker embedding model in a paper.
"ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in
TDNN Based Speaker Verification" (https://arxiv.org/abs/2005.07143).
Arguments
---------
activation : torch class
A class for constructing the activation layers.
channels : list of ints
Output channels for TDNN/SERes2Net layer.
kernel_sizes : list of ints
List of kernel sizes for each layer.
dilations : list of ints
List of dilations for kernels in each layer.
lin_neurons : int
Number of neurons in linear layers.
groups : list of ints
List of groups for kernels in each layer.
Example
-------
>>> input_feats = torch.rand([5, 120, 80])
>>> compute_embedding = ECAPA_TDNN(80, lin_neurons=192)
>>> outputs = compute_embedding(input_feats)
>>> outputs.shape
torch.Size([5, 1, 192])
"""
def __init__(
self,
input_size,
lin_neurons=192,
activation=torch.nn.ReLU,
channels=[512, 512, 512, 512, 1536],
kernel_sizes=[5, 3, 3, 3, 1],
dilations=[1, 2, 3, 4, 1],
attention_channels=128,
res2net_scale=8,
se_channels=128,
global_context=True,
groups=[1, 1, 1, 1, 1],
window_size=20,
window_shift=1,
):
super().__init__()
assert len(channels) == len(kernel_sizes)
assert len(channels) == len(dilations)
self.channels = channels
self.blocks = nn.ModuleList()
self.window_size = window_size
self.window_shift = window_shift
# The initial TDNN layer
self.blocks.append(
TDNNBlock(
input_size,
channels[0],
kernel_sizes[0],
dilations[0],
activation,
groups[0],
)
)
# SE-Res2Net layers
for i in range(1, len(channels) - 1):
self.blocks.append(
SERes2NetBlock(
channels[i - 1],
channels[i],
res2net_scale=res2net_scale,
se_channels=se_channels,
kernel_size=kernel_sizes[i],
dilation=dilations[i],
activation=activation,
groups=groups[i],
)
)
# Multi-layer feature aggregation
self.mfa = TDNNBlock(
channels[-1],
channels[-1],
kernel_sizes[-1],
dilations[-1],
activation,
groups=groups[-1],
)
# Attentive Statistical Pooling
self.asp = AttentiveStatisticsPooling(
channels[-1],
attention_channels=attention_channels,
global_context=global_context,
)
self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)
# Final linear transformation
self.fc = Conv1d(
in_channels=channels[-1] * 2,
out_channels=lin_neurons,
kernel_size=1,
)
def windowed_pooling(self, x, lengths=None):
# x: Batch, Channel, Time
tt = x.shape[2]
num_chunk = int(math.ceil(tt / self.window_shift))
pad = self.window_size // 2
x = F.pad(x, (pad, pad, 0, 0), "reflect")
stat_list = []
for i in range(num_chunk):
# B x C
st, ed = i * self.window_shift, i * self.window_shift + self.window_size
x = self.asp(
x[:, :, st:ed],
lengths=(
torch.clamp(lengths - i, 0, self.window_size)
if lengths is not None
else None
),
)
x = self.asp_bn(x)
x = self.fc(x)
stat_list.append(x)
return torch.cat(stat_list, dim=2)
def forward(self, x, lengths=None):
"""Returns the embedding vector.
Arguments
---------
x : torch.Tensor
Tensor of shape (batch, time, channel).
lengths: torch.Tensor
Tensor of shape (batch, )
"""
# Minimize transpose for efficiency
x = x.transpose(1, 2)
xl = []
for layer in self.blocks:
try:
x = layer(x, lengths=lengths)
except TypeError:
x = layer(x)
xl.append(x)
# Multi-layer feature aggregation
x = torch.cat(xl[1:], dim=1)
x = self.mfa(x)
if self.window_size is None:
# Attentive Statistical Pooling
x = self.asp(x, lengths=lengths)
x = self.asp_bn(x)
# Final linear transformation
x = self.fc(x)
# x = x.transpose(1, 2)
x = x.squeeze(2) # -> B, C
else:
x = self.windowed_pooling(x, lengths)
x = x.transpose(1, 2) # -> B, T, C
return x