mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
3.06 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from typing import List, Optional, Tuple
class FeedForward(torch.nn.Module):
"""FeedForward module definition.
Args:
size: Input/Output size.
hidden_size: Hidden size.
block_id: Block index.
num_blocks: Number of blocks in the architecture.
"""
def __init__(
self,
size: int,
hidden_size: int,
block_id: int,
dropout_rate: float,
num_blocks: int,
) -> None:
"""Construct a FeedForward object."""
super().__init__()
self.time_shift = torch.nn.ZeroPad2d((0, 0, 1, -1))
self.time_mix_key = torch.nn.Parameter(torch.empty(1, 1, size))
self.time_mix_receptance = torch.nn.Parameter(torch.empty(1, 1, size))
self.proj_key = torch.nn.Linear(size, hidden_size, bias=True)
self.proj_value = torch.nn.Linear(hidden_size, size, bias=True)
self.proj_receptance = torch.nn.Linear(size, size, bias=True)
self.block_id = block_id
self.reset_parameters(size, block_id, num_blocks)
self.dropout = torch.nn.Dropout(p=dropout_rate)
def reset_parameters(self, size: int, block_id: int, num_blocks: int) -> None:
"""Reset module parameters.
Args:
size: Block size.
block_id: Block index.
num_blocks: Number of blocks in the architecture.
"""
ratio_1_to_almost0 = 1.0 - (block_id / num_blocks)
time_weight = torch.ones(1, 1, size)
for i in range(size):
time_weight[0, 0, i] = i / size
with torch.no_grad():
self.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
self.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0)
def forward(
self, x: torch.Tensor, state: Optional[List[torch.Tensor]] = None
) -> Tuple[torch.Tensor, Optional[List[torch.Tensor]]]:
"""Compute channel mixing.
Args:
x: FeedForward input sequences. (B, U, size)
state: Decoder hidden state. [5 x (B, 1, size, N)]
Returns:
x: FeedForward output sequences. (B, U, size)
state: Decoder hidden state. [5 x (B, 1, size, N)]
"""
shifted_x = (
self.time_shift(x) if state is None else state[0][..., self.block_id]
)
key = x * self.time_mix_key + shifted_x * (1 - self.time_mix_key)
receptance = x * self.time_mix_receptance + shifted_x * (
1 - self.time_mix_receptance
)
key = torch.square(torch.relu(self.proj_key(key)))
value = self.proj_value(self.dropout(key))
receptance = torch.sigmoid(self.proj_receptance(receptance))
if state is not None:
state[0][..., self.block_id] = x
x = receptance * value
return x, state