Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import torch | |
from typing import List, Optional, Tuple | |
class FeedForward(torch.nn.Module): | |
"""FeedForward module definition. | |
Args: | |
size: Input/Output size. | |
hidden_size: Hidden size. | |
block_id: Block index. | |
num_blocks: Number of blocks in the architecture. | |
""" | |
def __init__( | |
self, | |
size: int, | |
hidden_size: int, | |
block_id: int, | |
dropout_rate: float, | |
num_blocks: int, | |
) -> None: | |
"""Construct a FeedForward object.""" | |
super().__init__() | |
self.time_shift = torch.nn.ZeroPad2d((0, 0, 1, -1)) | |
self.time_mix_key = torch.nn.Parameter(torch.empty(1, 1, size)) | |
self.time_mix_receptance = torch.nn.Parameter(torch.empty(1, 1, size)) | |
self.proj_key = torch.nn.Linear(size, hidden_size, bias=True) | |
self.proj_value = torch.nn.Linear(hidden_size, size, bias=True) | |
self.proj_receptance = torch.nn.Linear(size, size, bias=True) | |
self.block_id = block_id | |
self.reset_parameters(size, block_id, num_blocks) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
def reset_parameters(self, size: int, block_id: int, num_blocks: int) -> None: | |
"""Reset module parameters. | |
Args: | |
size: Block size. | |
block_id: Block index. | |
num_blocks: Number of blocks in the architecture. | |
""" | |
ratio_1_to_almost0 = 1.0 - (block_id / num_blocks) | |
time_weight = torch.ones(1, 1, size) | |
for i in range(size): | |
time_weight[0, 0, i] = i / size | |
with torch.no_grad(): | |
self.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) | |
self.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0) | |
def forward( | |
self, x: torch.Tensor, state: Optional[List[torch.Tensor]] = None | |
) -> Tuple[torch.Tensor, Optional[List[torch.Tensor]]]: | |
"""Compute channel mixing. | |
Args: | |
x: FeedForward input sequences. (B, U, size) | |
state: Decoder hidden state. [5 x (B, 1, size, N)] | |
Returns: | |
x: FeedForward output sequences. (B, U, size) | |
state: Decoder hidden state. [5 x (B, 1, size, N)] | |
""" | |
shifted_x = ( | |
self.time_shift(x) if state is None else state[0][..., self.block_id] | |
) | |
key = x * self.time_mix_key + shifted_x * (1 - self.time_mix_key) | |
receptance = x * self.time_mix_receptance + shifted_x * ( | |
1 - self.time_mix_receptance | |
) | |
key = torch.square(torch.relu(self.proj_key(key))) | |
value = self.proj_value(self.dropout(key)) | |
receptance = torch.sigmoid(self.proj_receptance(receptance)) | |
if state is not None: | |
state[0][..., self.block_id] = x | |
x = receptance * value | |
return x, state | |