Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import torch | |
from typing import Dict, Optional, Tuple | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.rwkv_bat.rwkv_feed_forward import FeedForward | |
from funasr_detach.models.rwkv_bat.rwkv_attention import ( | |
EncoderSelfAttention, | |
DecoderSelfAttention, | |
) | |
class RWKV(torch.nn.Module): | |
"""RWKV module. | |
Args: | |
size: Input/Output size. | |
linear_size: Feed-forward hidden size. | |
attention_size: SelfAttention hidden size. | |
context_size: Context size for WKV computation. | |
block_id: Block index. | |
num_blocks: Number of blocks in the architecture. | |
normalization_class: Normalization layer class. | |
normalization_args: Normalization layer arguments. | |
att_dropout_rate: Dropout rate for the attention module. | |
ffn_dropout_rate: Dropout rate for the feed-forward module. | |
""" | |
def __init__( | |
self, | |
size: int, | |
linear_size: int, | |
attention_size: int, | |
context_size: int, | |
block_id: int, | |
num_blocks: int, | |
att_dropout_rate: float = 0.0, | |
ffn_dropout_rate: float = 0.0, | |
dropout_rate: float = 0.0, | |
) -> None: | |
"""Construct a RWKV object.""" | |
super().__init__() | |
self.layer_norm_att = LayerNorm(size) | |
self.layer_norm_ffn = LayerNorm(size) | |
self.att = EncoderSelfAttention( | |
size, attention_size, context_size, block_id, att_dropout_rate, num_blocks | |
) | |
self.dropout_att = torch.nn.Dropout(p=dropout_rate) | |
self.ffn = FeedForward( | |
size, linear_size, block_id, ffn_dropout_rate, num_blocks | |
) | |
self.dropout_ffn = torch.nn.Dropout(p=dropout_rate) | |
def forward( | |
self, | |
x: torch.Tensor, | |
state: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""Compute receptance weighted key value. | |
Args: | |
x: RWKV input sequences. (B, L, size) | |
state: Decoder hidden states. [5 x (B, D_att/size, N)] | |
Returns: | |
x: RWKV output sequences. (B, L, size) | |
x: Decoder hidden states. [5 x (B, D_att/size, N)] | |
""" | |
att, state = self.att(self.layer_norm_att(x), state=state) | |
x = x + self.dropout_att(att) | |
ffn, state = self.ffn(self.layer_norm_ffn(x), state=state) | |
x = x + self.dropout_ffn(ffn) | |
return x, state | |
class RWKVDecoderLayer(torch.nn.Module): | |
"""RWKV module. | |
Args: | |
size: Input/Output size. | |
linear_size: Feed-forward hidden size. | |
attention_size: SelfAttention hidden size. | |
context_size: Context size for WKV computation. | |
block_id: Block index. | |
num_blocks: Number of blocks in the architecture. | |
normalization_class: Normalization layer class. | |
normalization_args: Normalization layer arguments. | |
att_dropout_rate: Dropout rate for the attention module. | |
ffn_dropout_rate: Dropout rate for the feed-forward module. | |
""" | |
def __init__( | |
self, | |
size: int, | |
linear_size: int, | |
attention_size: int, | |
context_size: int, | |
block_id: int, | |
num_blocks: int, | |
att_dropout_rate: float = 0.0, | |
ffn_dropout_rate: float = 0.0, | |
dropout_rate: float = 0.0, | |
) -> None: | |
"""Construct a RWKV object.""" | |
super().__init__() | |
self.layer_norm_att = LayerNorm(size) | |
self.layer_norm_ffn = LayerNorm(size) | |
self.att = DecoderSelfAttention( | |
size, attention_size, context_size, block_id, att_dropout_rate, num_blocks | |
) | |
self.dropout_att = torch.nn.Dropout(p=dropout_rate) | |
self.ffn = FeedForward( | |
size, linear_size, block_id, ffn_dropout_rate, num_blocks | |
) | |
self.dropout_ffn = torch.nn.Dropout(p=dropout_rate) | |
def forward( | |
self, | |
x: torch.Tensor, | |
state: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""Compute receptance weighted key value. | |
Args: | |
x: RWKV input sequences. (B, L, size) | |
state: Decoder hidden states. [5 x (B, D_att/size, N)] | |
Returns: | |
x: RWKV output sequences. (B, L, size) | |
x: Decoder hidden states. [5 x (B, D_att/size, N)] | |
""" | |
att, state = self.att(self.layer_norm_att(x), state=state) | |
x = x + self.dropout_att(att) | |
ffn, state = self.ffn(self.layer_norm_ffn(x), state=state) | |
x = x + self.dropout_ffn(ffn) | |
return x, state | |