mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
4.82 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from typing import Dict, Optional, Tuple
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.rwkv_bat.rwkv_feed_forward import FeedForward
from funasr_detach.models.rwkv_bat.rwkv_attention import (
EncoderSelfAttention,
DecoderSelfAttention,
)
class RWKV(torch.nn.Module):
"""RWKV module.
Args:
size: Input/Output size.
linear_size: Feed-forward hidden size.
attention_size: SelfAttention hidden size.
context_size: Context size for WKV computation.
block_id: Block index.
num_blocks: Number of blocks in the architecture.
normalization_class: Normalization layer class.
normalization_args: Normalization layer arguments.
att_dropout_rate: Dropout rate for the attention module.
ffn_dropout_rate: Dropout rate for the feed-forward module.
"""
def __init__(
self,
size: int,
linear_size: int,
attention_size: int,
context_size: int,
block_id: int,
num_blocks: int,
att_dropout_rate: float = 0.0,
ffn_dropout_rate: float = 0.0,
dropout_rate: float = 0.0,
) -> None:
"""Construct a RWKV object."""
super().__init__()
self.layer_norm_att = LayerNorm(size)
self.layer_norm_ffn = LayerNorm(size)
self.att = EncoderSelfAttention(
size, attention_size, context_size, block_id, att_dropout_rate, num_blocks
)
self.dropout_att = torch.nn.Dropout(p=dropout_rate)
self.ffn = FeedForward(
size, linear_size, block_id, ffn_dropout_rate, num_blocks
)
self.dropout_ffn = torch.nn.Dropout(p=dropout_rate)
def forward(
self,
x: torch.Tensor,
state: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Compute receptance weighted key value.
Args:
x: RWKV input sequences. (B, L, size)
state: Decoder hidden states. [5 x (B, D_att/size, N)]
Returns:
x: RWKV output sequences. (B, L, size)
x: Decoder hidden states. [5 x (B, D_att/size, N)]
"""
att, state = self.att(self.layer_norm_att(x), state=state)
x = x + self.dropout_att(att)
ffn, state = self.ffn(self.layer_norm_ffn(x), state=state)
x = x + self.dropout_ffn(ffn)
return x, state
class RWKVDecoderLayer(torch.nn.Module):
"""RWKV module.
Args:
size: Input/Output size.
linear_size: Feed-forward hidden size.
attention_size: SelfAttention hidden size.
context_size: Context size for WKV computation.
block_id: Block index.
num_blocks: Number of blocks in the architecture.
normalization_class: Normalization layer class.
normalization_args: Normalization layer arguments.
att_dropout_rate: Dropout rate for the attention module.
ffn_dropout_rate: Dropout rate for the feed-forward module.
"""
def __init__(
self,
size: int,
linear_size: int,
attention_size: int,
context_size: int,
block_id: int,
num_blocks: int,
att_dropout_rate: float = 0.0,
ffn_dropout_rate: float = 0.0,
dropout_rate: float = 0.0,
) -> None:
"""Construct a RWKV object."""
super().__init__()
self.layer_norm_att = LayerNorm(size)
self.layer_norm_ffn = LayerNorm(size)
self.att = DecoderSelfAttention(
size, attention_size, context_size, block_id, att_dropout_rate, num_blocks
)
self.dropout_att = torch.nn.Dropout(p=dropout_rate)
self.ffn = FeedForward(
size, linear_size, block_id, ffn_dropout_rate, num_blocks
)
self.dropout_ffn = torch.nn.Dropout(p=dropout_rate)
def forward(
self,
x: torch.Tensor,
state: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Compute receptance weighted key value.
Args:
x: RWKV input sequences. (B, L, size)
state: Decoder hidden states. [5 x (B, D_att/size, N)]
Returns:
x: RWKV output sequences. (B, L, size)
x: Decoder hidden states. [5 x (B, D_att/size, N)]
"""
att, state = self.att(self.layer_norm_att(x), state=state)
x = x + self.dropout_att(att)
ffn, state = self.ffn(self.layer_norm_ffn(x), state=state)
x = x + self.dropout_ffn(ffn)
return x, state