Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import time | |
import torch | |
import logging | |
from torch.cuda.amp import autocast | |
from typing import Union, Dict, List, Tuple, Optional | |
from funasr_detach.register import tables | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.search import Hypothesis | |
from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
class Paraformer(torch.nn.Module): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition | |
https://arxiv.org/abs/2206.08317 | |
""" | |
def __init__( | |
self, | |
specaug: Optional[str] = None, | |
specaug_conf: Optional[Dict] = None, | |
normalize: str = None, | |
normalize_conf: Optional[Dict] = None, | |
encoder: str = None, | |
encoder_conf: Optional[Dict] = None, | |
decoder: str = None, | |
decoder_conf: Optional[Dict] = None, | |
ctc: str = None, | |
ctc_conf: Optional[Dict] = None, | |
predictor: str = None, | |
predictor_conf: Optional[Dict] = None, | |
ctc_weight: float = 0.5, | |
input_size: int = 80, | |
vocab_size: int = -1, | |
ignore_id: int = -1, | |
blank_id: int = 0, | |
sos: int = 1, | |
eos: int = 2, | |
lsm_weight: float = 0.0, | |
length_normalized_loss: bool = False, | |
# report_cer: bool = True, | |
# report_wer: bool = True, | |
# sym_space: str = "<space>", | |
# sym_blank: str = "<blank>", | |
# extract_feats_in_collect_stats: bool = True, | |
# predictor=None, | |
predictor_weight: float = 0.0, | |
predictor_bias: int = 0, | |
sampling_ratio: float = 0.2, | |
share_embedding: bool = False, | |
# preencoder: Optional[AbsPreEncoder] = None, | |
# postencoder: Optional[AbsPostEncoder] = None, | |
use_1st_decoder_loss: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
if specaug is not None: | |
specaug_class = tables.specaug_classes.get(specaug) | |
specaug = specaug_class(**specaug_conf) | |
if normalize is not None: | |
normalize_class = tables.normalize_classes.get(normalize) | |
normalize = normalize_class(**normalize_conf) | |
encoder_class = tables.encoder_classes.get(encoder) | |
encoder = encoder_class(input_size=input_size, **encoder_conf) | |
encoder_output_size = encoder.output_size() | |
if decoder is not None: | |
decoder_class = tables.decoder_classes.get(decoder) | |
decoder = decoder_class( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
**decoder_conf, | |
) | |
if ctc_weight > 0.0: | |
if ctc_conf is None: | |
ctc_conf = {} | |
ctc = CTC( | |
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf | |
) | |
if predictor is not None: | |
predictor_class = tables.predictor_classes.get(predictor) | |
predictor = predictor_class(**predictor_conf) | |
# note that eos is the same as sos (equivalent ID) | |
self.blank_id = blank_id | |
self.sos = sos if sos is not None else vocab_size - 1 | |
self.eos = eos if eos is not None else vocab_size - 1 | |
self.vocab_size = vocab_size | |
self.ignore_id = ignore_id | |
self.ctc_weight = ctc_weight | |
# self.token_list = token_list.copy() | |
# | |
# self.frontend = frontend | |
self.specaug = specaug | |
self.normalize = normalize | |
# self.preencoder = preencoder | |
# self.postencoder = postencoder | |
self.encoder = encoder | |
# | |
# if not hasattr(self.encoder, "interctc_use_conditioning"): | |
# self.encoder.interctc_use_conditioning = False | |
# if self.encoder.interctc_use_conditioning: | |
# self.encoder.conditioning_layer = torch.nn.Linear( | |
# vocab_size, self.encoder.output_size() | |
# ) | |
# | |
# self.error_calculator = None | |
# | |
if ctc_weight == 1.0: | |
self.decoder = None | |
else: | |
self.decoder = decoder | |
self.criterion_att = LabelSmoothingLoss( | |
size=vocab_size, | |
padding_idx=ignore_id, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
# | |
# if report_cer or report_wer: | |
# self.error_calculator = ErrorCalculator( | |
# token_list, sym_space, sym_blank, report_cer, report_wer | |
# ) | |
# | |
if ctc_weight == 0.0: | |
self.ctc = None | |
else: | |
self.ctc = ctc | |
# | |
# self.extract_feats_in_collect_stats = extract_feats_in_collect_stats | |
self.predictor = predictor | |
self.predictor_weight = predictor_weight | |
self.predictor_bias = predictor_bias | |
self.sampling_ratio = sampling_ratio | |
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) | |
# self.step_cur = 0 | |
# | |
self.share_embedding = share_embedding | |
if self.share_embedding: | |
self.decoder.embed = None | |
self.use_1st_decoder_loss = use_1st_decoder_loss | |
self.length_normalized_loss = length_normalized_loss | |
self.beam_search = None | |
self.error_calculator = None | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
# import pdb; | |
# pdb.set_trace() | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
loss_ctc, cer_ctc = None, None | |
loss_pre = None | |
stats = dict() | |
# decoder: CTC branch | |
if self.ctc_weight != 0.0: | |
loss_ctc, cer_ctc = self._calc_ctc_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
# Collect CTC branch stats | |
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
stats["cer_ctc"] = cer_ctc | |
# decoder: Attention decoder branch | |
loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = ( | |
self._calc_att_loss(encoder_out, encoder_out_lens, text, text_lengths) | |
) | |
# 3. CTC-Att loss definition | |
if self.ctc_weight == 0.0: | |
loss = loss_att + loss_pre * self.predictor_weight | |
else: | |
loss = ( | |
self.ctc_weight * loss_ctc | |
+ (1 - self.ctc_weight) * loss_att | |
+ loss_pre * self.predictor_weight | |
) | |
# Collect Attn branch stats | |
stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
stats["pre_loss_att"] = ( | |
pre_loss_att.detach() if pre_loss_att is not None else None | |
) | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = (text_lengths + self.predictor_bias).sum() | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def encode( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
ind: int | |
""" | |
with autocast(False): | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
# Forward encoder | |
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
return encoder_out, encoder_out_lens | |
def calc_predictor(self, encoder_out, encoder_out_lens): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor( | |
encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index | |
def cal_decoder_with_predictor( | |
self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens | |
): | |
decoder_outs = self.decoder( | |
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens | |
) | |
decoder_out = decoder_outs[0] | |
decoder_out = torch.log_softmax(decoder_out, dim=-1) | |
return decoder_out, ys_pad_lens | |
def _calc_att_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
if self.predictor_bias == 1: | |
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_pad_lens = ys_pad_lens + self.predictor_bias | |
pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor( | |
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
# 0. sampler | |
decoder_out_1st = None | |
pre_loss_att = None | |
if self.sampling_ratio > 0.0: | |
sematic_embeds, decoder_out_1st = self.sampler( | |
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds | |
) | |
else: | |
sematic_embeds = pre_acoustic_embeds | |
# 1. Forward decoder | |
decoder_outs = self.decoder( | |
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
if decoder_out_1st is None: | |
decoder_out_1st = decoder_out | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_pad) | |
acc_att = th_accuracy( | |
decoder_out_1st.view(-1, self.vocab_size), | |
ys_pad, | |
ignore_label=self.ignore_id, | |
) | |
loss_pre = self.criterion_pre( | |
ys_pad_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out_1st.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att | |
def sampler( | |
self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds | |
): | |
tgt_mask = ( | |
~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None] | |
).to(ys_pad.device) | |
ys_pad_masked = ys_pad * tgt_mask[:, :, 0] | |
if self.share_embedding: | |
ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] | |
else: | |
ys_pad_embed = self.decoder.embed(ys_pad_masked) | |
with torch.no_grad(): | |
decoder_outs = self.decoder( | |
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
pred_tokens = decoder_out.argmax(-1) | |
nonpad_positions = ys_pad.ne(self.ignore_id) | |
seq_lens = (nonpad_positions).sum(1) | |
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) | |
input_mask = torch.ones_like(nonpad_positions) | |
bsz, seq_len = ys_pad.size() | |
for li in range(bsz): | |
target_num = ( | |
((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio | |
).long() | |
if target_num > 0: | |
input_mask[li].scatter_( | |
dim=0, | |
index=torch.randperm(seq_lens[li])[:target_num].to( | |
input_mask.device | |
), | |
value=0, | |
) | |
input_mask = input_mask.eq(1) | |
input_mask = input_mask.masked_fill(~nonpad_positions, False) | |
input_mask_expand_dim = input_mask.unsqueeze(2).to( | |
pre_acoustic_embeds.device | |
) | |
sematic_embeds = pre_acoustic_embeds.masked_fill( | |
~input_mask_expand_dim, 0 | |
) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0) | |
return sematic_embeds * tgt_mask, decoder_out * tgt_mask | |
def _calc_ctc_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
# Calc CTC loss | |
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) | |
# Calc CER using CTC | |
cer_ctc = None | |
if not self.training and self.error_calculator is not None: | |
ys_hat = self.ctc.argmax(encoder_out).data | |
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) | |
return loss_ctc, cer_ctc | |
def init_beam_search( | |
self, | |
**kwargs, | |
): | |
from funasr_detach.models.paraformer.search import BeamSearchPara | |
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
# 1. Build ASR model | |
scorers = {} | |
if self.ctc != None: | |
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
scorers.update(ctc=ctc) | |
token_list = kwargs.get("token_list") | |
scorers.update( | |
length_bonus=LengthBonus(len(token_list)), | |
) | |
# 3. Build ngram model | |
# ngram is not supported now | |
ngram = None | |
scorers["ngram"] = ngram | |
weights = dict( | |
decoder=1.0 - kwargs.get("decoding_ctc_weight"), | |
ctc=kwargs.get("decoding_ctc_weight", 0.0), | |
lm=kwargs.get("lm_weight", 0.0), | |
ngram=kwargs.get("ngram_weight", 0.0), | |
length_bonus=kwargs.get("penalty", 0.0), | |
) | |
beam_search = BeamSearchPara( | |
beam_size=kwargs.get("beam_size", 2), | |
weights=weights, | |
scorers=scorers, | |
sos=self.sos, | |
eos=self.eos, | |
vocab_size=len(token_list), | |
token_list=token_list, | |
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", | |
) | |
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
# for scorer in scorers.values(): | |
# if isinstance(scorer, torch.nn.Module): | |
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
self.beam_search = beam_search | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
if self.beam_search is None and (is_use_lm or is_use_ctc): | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
meta_data = {} | |
if ( | |
isinstance(data_in, torch.Tensor) | |
and kwargs.get("data_type", "sound") == "fbank" | |
): # fbank | |
speech, speech_lengths = data_in, data_lengths | |
if len(speech.shape) < 3: | |
speech = speech[None, :, :] | |
if speech_lengths is not None: | |
speech_lengths = speech_lengths.squeeze(-1) | |
else: | |
speech_lengths = speech.shape[1] | |
else: | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() | |
* frontend.frame_shift | |
* frontend.lfr_n | |
/ 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# predictor | |
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( | |
predictor_outs[0], | |
predictor_outs[1], | |
predictor_outs[2], | |
predictor_outs[3], | |
) | |
pre_token_length = pre_token_length.round().long() | |
if torch.max(pre_token_length) < 1: | |
return [] | |
decoder_outs = self.cal_decoder_with_predictor( | |
encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length | |
) | |
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] | |
results = [] | |
b, n, d = decoder_out.size() | |
if isinstance(key[0], (list, tuple)): | |
key = key[0] | |
if len(key) < b: | |
key = key * b | |
for i in range(b): | |
x = encoder_out[i, : encoder_out_lens[i], :] | |
am_scores = decoder_out[i, : pre_token_length[i], :] | |
if self.beam_search is not None: | |
nbest_hyps = self.beam_search( | |
x=x, | |
am_scores=am_scores, | |
maxlenratio=kwargs.get("maxlenratio", 0.0), | |
minlenratio=kwargs.get("minlenratio", 0.0), | |
) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
else: | |
yseq = am_scores.argmax(dim=-1) | |
score = am_scores.max(dim=-1)[0] | |
score = torch.sum(score, dim=-1) | |
# pad with mask tokens to ensure compatibility with sos/eos tokens | |
yseq = torch.tensor( | |
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device | |
) | |
nbest_hyps = [Hypothesis(yseq=yseq, score=score)] | |
for nbest_idx, hyp in enumerate(nbest_hyps): | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{nbest_idx+1}best_recog"] | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
if tokenizer is not None: | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
text_postprocessed = tokenizer.tokens2text(token) | |
if not hasattr(tokenizer, "bpemodel"): | |
text_postprocessed, _ = postprocess_utils.sentence_postprocess( | |
token | |
) | |
result_i = {"key": key[i], "text": text_postprocessed} | |
if ibest_writer is not None: | |
ibest_writer["token"][key[i]] = " ".join(token) | |
# ibest_writer["text"][key[i]] = text | |
ibest_writer["text"][key[i]] = text_postprocessed | |
else: | |
result_i = {"key": key[i], "token_int": token_int} | |
results.append(result_i) | |
return results, meta_data | |