mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
23.1 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import time
import torch
import logging
from torch.cuda.amp import autocast
from typing import Union, Dict, List, Tuple, Optional
from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.models.paraformer.cif_predictor import mae_loss
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
@tables.register("model_classes", "Paraformer")
class Paraformer(torch.nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
specaug: Optional[str] = None,
specaug_conf: Optional[Dict] = None,
normalize: str = None,
normalize_conf: Optional[Dict] = None,
encoder: str = None,
encoder_conf: Optional[Dict] = None,
decoder: str = None,
decoder_conf: Optional[Dict] = None,
ctc: str = None,
ctc_conf: Optional[Dict] = None,
predictor: str = None,
predictor_conf: Optional[Dict] = None,
ctc_weight: float = 0.5,
input_size: int = 80,
vocab_size: int = -1,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
# report_cer: bool = True,
# report_wer: bool = True,
# sym_space: str = "<space>",
# sym_blank: str = "<blank>",
# extract_feats_in_collect_stats: bool = True,
# predictor=None,
predictor_weight: float = 0.0,
predictor_bias: int = 0,
sampling_ratio: float = 0.2,
share_embedding: bool = False,
# preencoder: Optional[AbsPreEncoder] = None,
# postencoder: Optional[AbsPostEncoder] = None,
use_1st_decoder_loss: bool = False,
**kwargs,
):
super().__init__()
if specaug is not None:
specaug_class = tables.specaug_classes.get(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = tables.normalize_classes.get(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
if decoder is not None:
decoder_class = tables.decoder_classes.get(decoder)
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
**decoder_conf,
)
if ctc_weight > 0.0:
if ctc_conf is None:
ctc_conf = {}
ctc = CTC(
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
)
if predictor is not None:
predictor_class = tables.predictor_classes.get(predictor)
predictor = predictor_class(**predictor_conf)
# note that eos is the same as sos (equivalent ID)
self.blank_id = blank_id
self.sos = sos if sos is not None else vocab_size - 1
self.eos = eos if eos is not None else vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
# self.token_list = token_list.copy()
#
# self.frontend = frontend
self.specaug = specaug
self.normalize = normalize
# self.preencoder = preencoder
# self.postencoder = postencoder
self.encoder = encoder
#
# if not hasattr(self.encoder, "interctc_use_conditioning"):
# self.encoder.interctc_use_conditioning = False
# if self.encoder.interctc_use_conditioning:
# self.encoder.conditioning_layer = torch.nn.Linear(
# vocab_size, self.encoder.output_size()
# )
#
# self.error_calculator = None
#
if ctc_weight == 1.0:
self.decoder = None
else:
self.decoder = decoder
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
#
# if report_cer or report_wer:
# self.error_calculator = ErrorCalculator(
# token_list, sym_space, sym_blank, report_cer, report_wer
# )
#
if ctc_weight == 0.0:
self.ctc = None
else:
self.ctc = ctc
#
# self.extract_feats_in_collect_stats = extract_feats_in_collect_stats
self.predictor = predictor
self.predictor_weight = predictor_weight
self.predictor_bias = predictor_bias
self.sampling_ratio = sampling_ratio
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
# self.step_cur = 0
#
self.share_embedding = share_embedding
if self.share_embedding:
self.decoder.embed = None
self.use_1st_decoder_loss = use_1st_decoder_loss
self.length_normalized_loss = length_normalized_loss
self.beam_search = None
self.error_calculator = None
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
# import pdb;
# pdb.set_trace()
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# decoder: CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# decoder: Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = (
self._calc_att_loss(encoder_out, encoder_out_lens, text, text_lengths)
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight
else:
loss = (
self.ctc_weight * loss_ctc
+ (1 - self.ctc_weight) * loss_att
+ loss_pre * self.predictor_weight
)
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["pre_loss_att"] = (
pre_loss_att.detach() if pre_loss_att is not None else None
)
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = (text_lengths + self.predictor_bias).sum()
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def encode(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
ind: int
"""
with autocast(False):
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
# Forward encoder
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
return encoder_out, encoder_out_lens
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(
encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id
)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def cal_decoder_with_predictor(
self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
):
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out = decoder_outs[0]
decoder_out = torch.log_softmax(decoder_out, dim=-1)
return decoder_out, ys_pad_lens
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)
# 0. sampler
decoder_out_1st = None
pre_loss_att = None
if self.sampling_ratio > 0.0:
sematic_embeds, decoder_out_1st = self.sampler(
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds
)
else:
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(
ys_pad_lens.type_as(pre_token_length), pre_token_length
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att
def sampler(
self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds
):
tgt_mask = (
~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]
).to(ys_pad.device)
ys_pad_masked = ys_pad * tgt_mask[:, :, 0]
if self.share_embedding:
ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked]
else:
ys_pad_embed = self.decoder.embed(ys_pad_masked)
with torch.no_grad():
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
pred_tokens = decoder_out.argmax(-1)
nonpad_positions = ys_pad.ne(self.ignore_id)
seq_lens = (nonpad_positions).sum(1)
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
input_mask = torch.ones_like(nonpad_positions)
bsz, seq_len = ys_pad.size()
for li in range(bsz):
target_num = (
((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio
).long()
if target_num > 0:
input_mask[li].scatter_(
dim=0,
index=torch.randperm(seq_lens[li])[:target_num].to(
input_mask.device
),
value=0,
)
input_mask = input_mask.eq(1)
input_mask = input_mask.masked_fill(~nonpad_positions, False)
input_mask_expand_dim = input_mask.unsqueeze(2).to(
pre_acoustic_embeds.device
)
sematic_embeds = pre_acoustic_embeds.masked_fill(
~input_mask_expand_dim, 0
) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0)
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc
def init_beam_search(
self,
**kwargs,
):
from funasr_detach.models.paraformer.search import BeamSearchPara
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus
# 1. Build ASR model
scorers = {}
if self.ctc != None:
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
scorers.update(ctc=ctc)
token_list = kwargs.get("token_list")
scorers.update(
length_bonus=LengthBonus(len(token_list)),
)
# 3. Build ngram model
# ngram is not supported now
ngram = None
scorers["ngram"] = ngram
weights = dict(
decoder=1.0 - kwargs.get("decoding_ctc_weight"),
ctc=kwargs.get("decoding_ctc_weight", 0.0),
lm=kwargs.get("lm_weight", 0.0),
ngram=kwargs.get("ngram_weight", 0.0),
length_bonus=kwargs.get("penalty", 0.0),
)
beam_search = BeamSearchPara(
beam_size=kwargs.get("beam_size", 2),
weights=weights,
scorers=scorers,
sos=self.sos,
eos=self.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
)
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
# for scorer in scorers.values():
# if isinstance(scorer, torch.nn.Module):
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
self.beam_search = beam_search
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = (
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
)
is_use_lm = (
kwargs.get("lm_weight", 0.0) > 0.00001
and kwargs.get("lm_file", None) is not None
)
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
if (
isinstance(data_in, torch.Tensor)
and kwargs.get("data_type", "sound") == "fbank"
): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is not None:
speech_lengths = speech_lengths.squeeze(-1)
else:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list,
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item()
* frontend.frame_shift
* frontend.lfr_n
/ 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
predictor_outs[0],
predictor_outs[1],
predictor_outs[2],
predictor_outs[3],
)
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
decoder_outs = self.cal_decoder_with_predictor(
encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length
)
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
results = []
b, n, d = decoder_out.size()
if isinstance(key[0], (list, tuple)):
key = key[0]
if len(key) < b:
key = key * b
for i in range(b):
x = encoder_out[i, : encoder_out_lens[i], :]
am_scores = decoder_out[i, : pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x,
am_scores=am_scores,
maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0),
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{nbest_idx+1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos
and x != self.sos
and x != self.blank_id,
token_int,
)
)
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text_postprocessed = tokenizer.tokens2text(token)
if not hasattr(tokenizer, "bpemodel"):
text_postprocessed, _ = postprocess_utils.sentence_postprocess(
token
)
result_i = {"key": key[i], "text": text_postprocessed}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
# ibest_writer["text"][key[i]] = text
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data