Spaces:
Runtime error
Runtime error
from typing import Tuple, Dict | |
import copy | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from funasr_detach.register import tables | |
class LinearTransform(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super(LinearTransform, self).__init__() | |
self.input_dim = input_dim | |
self.output_dim = output_dim | |
self.linear = nn.Linear(input_dim, output_dim, bias=False) | |
def forward(self, input): | |
output = self.linear(input) | |
return output | |
class AffineTransform(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super(AffineTransform, self).__init__() | |
self.input_dim = input_dim | |
self.output_dim = output_dim | |
self.linear = nn.Linear(input_dim, output_dim) | |
def forward(self, input): | |
output = self.linear(input) | |
return output | |
class RectifiedLinear(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super(RectifiedLinear, self).__init__() | |
self.dim = input_dim | |
self.relu = nn.ReLU() | |
self.dropout = nn.Dropout(0.1) | |
def forward(self, input): | |
out = self.relu(input) | |
return out | |
class FSMNBlock(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
output_dim: int, | |
lorder=None, | |
rorder=None, | |
lstride=1, | |
rstride=1, | |
): | |
super(FSMNBlock, self).__init__() | |
self.dim = input_dim | |
if lorder is None: | |
return | |
self.lorder = lorder | |
self.rorder = rorder | |
self.lstride = lstride | |
self.rstride = rstride | |
self.conv_left = nn.Conv2d( | |
self.dim, | |
self.dim, | |
[lorder, 1], | |
dilation=[lstride, 1], | |
groups=self.dim, | |
bias=False, | |
) | |
if self.rorder > 0: | |
self.conv_right = nn.Conv2d( | |
self.dim, | |
self.dim, | |
[rorder, 1], | |
dilation=[rstride, 1], | |
groups=self.dim, | |
bias=False, | |
) | |
else: | |
self.conv_right = None | |
def forward(self, input: torch.Tensor, cache: torch.Tensor): | |
x = torch.unsqueeze(input, 1) | |
x_per = x.permute(0, 3, 2, 1) # B D T C | |
cache = cache.to(x_per.device) | |
y_left = torch.cat((cache, x_per), dim=2) | |
cache = y_left[:, :, -(self.lorder - 1) * self.lstride :, :] | |
y_left = self.conv_left(y_left) | |
out = x_per + y_left | |
if self.conv_right is not None: | |
# maybe need to check | |
y_right = F.pad(x_per, [0, 0, 0, self.rorder * self.rstride]) | |
y_right = y_right[:, :, self.rstride :, :] | |
y_right = self.conv_right(y_right) | |
out += y_right | |
out_per = out.permute(0, 3, 2, 1) | |
output = out_per.squeeze(1) | |
return output, cache | |
class BasicBlock(nn.Module): | |
def __init__( | |
self, | |
linear_dim: int, | |
proj_dim: int, | |
lorder: int, | |
rorder: int, | |
lstride: int, | |
rstride: int, | |
stack_layer: int, | |
): | |
super(BasicBlock, self).__init__() | |
self.lorder = lorder | |
self.rorder = rorder | |
self.lstride = lstride | |
self.rstride = rstride | |
self.stack_layer = stack_layer | |
self.linear = LinearTransform(linear_dim, proj_dim) | |
self.fsmn_block = FSMNBlock( | |
proj_dim, proj_dim, lorder, rorder, lstride, rstride | |
) | |
self.affine = AffineTransform(proj_dim, linear_dim) | |
self.relu = RectifiedLinear(linear_dim, linear_dim) | |
def forward(self, input: torch.Tensor, cache: Dict[str, torch.Tensor]): | |
x1 = self.linear(input) # B T D | |
cache_layer_name = "cache_layer_{}".format(self.stack_layer) | |
if cache_layer_name not in cache: | |
cache[cache_layer_name] = torch.zeros( | |
x1.shape[0], x1.shape[-1], (self.lorder - 1) * self.lstride, 1 | |
) | |
x2, cache[cache_layer_name] = self.fsmn_block(x1, cache[cache_layer_name]) | |
x3 = self.affine(x2) | |
x4 = self.relu(x3) | |
return x4 | |
class FsmnStack(nn.Sequential): | |
def __init__(self, *args): | |
super(FsmnStack, self).__init__(*args) | |
def forward(self, input: torch.Tensor, cache: Dict[str, torch.Tensor]): | |
x = input | |
for module in self._modules.values(): | |
x = module(x, cache) | |
return x | |
""" | |
FSMN net for keyword spotting | |
input_dim: input dimension | |
linear_dim: fsmn input dimensionll | |
proj_dim: fsmn projection dimension | |
lorder: fsmn left order | |
rorder: fsmn right order | |
num_syn: output dimension | |
fsmn_layers: no. of sequential fsmn layers | |
""" | |
class FSMN(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
input_affine_dim: int, | |
fsmn_layers: int, | |
linear_dim: int, | |
proj_dim: int, | |
lorder: int, | |
rorder: int, | |
lstride: int, | |
rstride: int, | |
output_affine_dim: int, | |
output_dim: int, | |
): | |
super(FSMN, self).__init__() | |
self.input_dim = input_dim | |
self.input_affine_dim = input_affine_dim | |
self.fsmn_layers = fsmn_layers | |
self.linear_dim = linear_dim | |
self.proj_dim = proj_dim | |
self.output_affine_dim = output_affine_dim | |
self.output_dim = output_dim | |
self.in_linear1 = AffineTransform(input_dim, input_affine_dim) | |
self.in_linear2 = AffineTransform(input_affine_dim, linear_dim) | |
self.relu = RectifiedLinear(linear_dim, linear_dim) | |
self.fsmn = FsmnStack( | |
*[ | |
BasicBlock(linear_dim, proj_dim, lorder, rorder, lstride, rstride, i) | |
for i in range(fsmn_layers) | |
] | |
) | |
self.out_linear1 = AffineTransform(linear_dim, output_affine_dim) | |
self.out_linear2 = AffineTransform(output_affine_dim, output_dim) | |
self.softmax = nn.Softmax(dim=-1) | |
def fuse_modules(self): | |
pass | |
def forward( | |
self, input: torch.Tensor, cache: Dict[str, torch.Tensor] | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: | |
""" | |
Args: | |
input (torch.Tensor): Input tensor (B, T, D) | |
cache: when cache is not None, the forward is in streaming. The type of cache is a dict, egs, | |
{'cache_layer_1': torch.Tensor(B, T1, D)}, T1 is equal to self.lorder. It is {} for the 1st frame | |
""" | |
x1 = self.in_linear1(input) | |
x2 = self.in_linear2(x1) | |
x3 = self.relu(x2) | |
x4 = self.fsmn(x3, cache) # self.cache will update automatically in self.fsmn | |
x5 = self.out_linear1(x4) | |
x6 = self.out_linear2(x5) | |
x7 = self.softmax(x6) | |
return x7 | |
""" | |
one deep fsmn layer | |
dimproj: projection dimension, input and output dimension of memory blocks | |
dimlinear: dimension of mapping layer | |
lorder: left order | |
rorder: right order | |
lstride: left stride | |
rstride: right stride | |
""" | |
class DFSMN(nn.Module): | |
def __init__( | |
self, dimproj=64, dimlinear=128, lorder=20, rorder=1, lstride=1, rstride=1 | |
): | |
super(DFSMN, self).__init__() | |
self.lorder = lorder | |
self.rorder = rorder | |
self.lstride = lstride | |
self.rstride = rstride | |
self.expand = AffineTransform(dimproj, dimlinear) | |
self.shrink = LinearTransform(dimlinear, dimproj) | |
self.conv_left = nn.Conv2d( | |
dimproj, | |
dimproj, | |
[lorder, 1], | |
dilation=[lstride, 1], | |
groups=dimproj, | |
bias=False, | |
) | |
if rorder > 0: | |
self.conv_right = nn.Conv2d( | |
dimproj, | |
dimproj, | |
[rorder, 1], | |
dilation=[rstride, 1], | |
groups=dimproj, | |
bias=False, | |
) | |
else: | |
self.conv_right = None | |
def forward(self, input): | |
f1 = F.relu(self.expand(input)) | |
p1 = self.shrink(f1) | |
x = torch.unsqueeze(p1, 1) | |
x_per = x.permute(0, 3, 2, 1) | |
y_left = F.pad(x_per, [0, 0, (self.lorder - 1) * self.lstride, 0]) | |
if self.conv_right is not None: | |
y_right = F.pad(x_per, [0, 0, 0, (self.rorder) * self.rstride]) | |
y_right = y_right[:, :, self.rstride :, :] | |
out = x_per + self.conv_left(y_left) + self.conv_right(y_right) | |
else: | |
out = x_per + self.conv_left(y_left) | |
out1 = out.permute(0, 3, 2, 1) | |
output = input + out1.squeeze(1) | |
return output | |
""" | |
build stacked dfsmn layers | |
""" | |
def buildDFSMNRepeats(linear_dim=128, proj_dim=64, lorder=20, rorder=1, fsmn_layers=6): | |
repeats = [ | |
nn.Sequential(DFSMN(proj_dim, linear_dim, lorder, rorder, 1, 1)) | |
for i in range(fsmn_layers) | |
] | |
return nn.Sequential(*repeats) | |
if __name__ == "__main__": | |
fsmn = FSMN(400, 140, 4, 250, 128, 10, 2, 1, 1, 140, 2599) | |
print(fsmn) | |
num_params = sum(p.numel() for p in fsmn.parameters()) | |
print("the number of model params: {}".format(num_params)) | |
x = torch.zeros(128, 200, 400) # batch-size * time * dim | |
y, _ = fsmn(x) # batch-size * time * dim | |
print("input shape: {}".format(x.shape)) | |
print("output shape: {}".format(y.shape)) | |
print(fsmn.to_kaldi_net()) | |