Spaces:
Runtime error
Runtime error
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker. | |
ERes2Net incorporates both local and global feature fusion techniques to improve the performance. | |
The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. | |
The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. | |
ERes2Net-Large is an upgraded version of ERes2Net that uses a larger number of parameters to achieve better | |
recognition performance. Parameters expansion, baseWidth, and scale can be modified to obtain optimal performance. | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import funasr_detach.models.sond.pooling.pooling_layers as pooling_layers | |
from funasr_detach.models.eres2net.fusion import AFF | |
class ReLU(nn.Hardtanh): | |
def __init__(self, inplace=False): | |
super(ReLU, self).__init__(0, 20, inplace) | |
def __repr__(self): | |
inplace_str = "inplace" if self.inplace else "" | |
return self.__class__.__name__ + " (" + inplace_str + ")" | |
def conv1x1(in_planes, out_planes, stride=1): | |
"1x1 convolution without padding" | |
return nn.Conv2d( | |
in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False | |
) | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d( | |
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
class BasicBlockERes2Net(nn.Module): | |
expansion = 2 | |
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2): | |
super(BasicBlockERes2Net, self).__init__() | |
width = int(math.floor(planes * (baseWidth / 64.0))) | |
self.conv1 = conv1x1(in_planes, width * scale, stride) | |
self.bn1 = nn.BatchNorm2d(width * scale) | |
self.nums = scale | |
convs = [] | |
bns = [] | |
for i in range(self.nums): | |
convs.append(conv3x3(width, width)) | |
bns.append(nn.BatchNorm2d(width)) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
self.relu = ReLU(inplace=True) | |
self.conv3 = conv1x1(width * scale, planes * self.expansion) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
self.stride = stride | |
self.width = width | |
self.scale = scale | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
spx = torch.split(out, self.width, 1) | |
for i in range(self.nums): | |
if i == 0: | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
sp = self.convs[i](sp) | |
sp = self.relu(self.bns[i](sp)) | |
if i == 0: | |
out = sp | |
else: | |
out = torch.cat((out, sp), 1) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
residual = self.shortcut(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class BasicBlockERes2Net_diff_AFF(nn.Module): | |
expansion = 2 | |
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2): | |
super(BasicBlockERes2Net_diff_AFF, self).__init__() | |
width = int(math.floor(planes * (baseWidth / 64.0))) | |
self.conv1 = conv1x1(in_planes, width * scale, stride) | |
self.bn1 = nn.BatchNorm2d(width * scale) | |
self.nums = scale | |
convs = [] | |
fuse_models = [] | |
bns = [] | |
for i in range(self.nums): | |
convs.append(conv3x3(width, width)) | |
bns.append(nn.BatchNorm2d(width)) | |
for j in range(self.nums - 1): | |
fuse_models.append(AFF(channels=width)) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
self.fuse_models = nn.ModuleList(fuse_models) | |
self.relu = ReLU(inplace=True) | |
self.conv3 = conv1x1(width * scale, planes * self.expansion) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
self.stride = stride | |
self.width = width | |
self.scale = scale | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
spx = torch.split(out, self.width, 1) | |
for i in range(self.nums): | |
if i == 0: | |
sp = spx[i] | |
else: | |
sp = self.fuse_models[i - 1](sp, spx[i]) | |
sp = self.convs[i](sp) | |
sp = self.relu(self.bns[i](sp)) | |
if i == 0: | |
out = sp | |
else: | |
out = torch.cat((out, sp), 1) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
residual = self.shortcut(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ERes2Net(nn.Module): | |
def __init__( | |
self, | |
block=BasicBlockERes2Net, | |
block_fuse=BasicBlockERes2Net_diff_AFF, | |
num_blocks=[3, 4, 6, 3], | |
m_channels=32, | |
feat_dim=80, | |
embedding_size=192, | |
pooling_func="TSTP", | |
two_emb_layer=False, | |
): | |
super(ERes2Net, self).__init__() | |
self.in_planes = m_channels | |
self.feat_dim = feat_dim | |
self.embedding_size = embedding_size | |
self.stats_dim = int(feat_dim / 8) * m_channels * 8 | |
self.two_emb_layer = two_emb_layer | |
self.conv1 = nn.Conv2d( | |
1, m_channels, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.bn1 = nn.BatchNorm2d(m_channels) | |
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer( | |
block_fuse, m_channels * 4, num_blocks[2], stride=2 | |
) | |
self.layer4 = self._make_layer( | |
block_fuse, m_channels * 8, num_blocks[3], stride=2 | |
) | |
# Downsampling module for each layer | |
self.layer1_downsample = nn.Conv2d( | |
m_channels * 2, | |
m_channels * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, | |
) | |
self.layer2_downsample = nn.Conv2d( | |
m_channels * 4, | |
m_channels * 8, | |
kernel_size=3, | |
padding=1, | |
stride=2, | |
bias=False, | |
) | |
self.layer3_downsample = nn.Conv2d( | |
m_channels * 8, | |
m_channels * 16, | |
kernel_size=3, | |
padding=1, | |
stride=2, | |
bias=False, | |
) | |
# Bottom-up fusion module | |
self.fuse_mode12 = AFF(channels=m_channels * 4) | |
self.fuse_mode123 = AFF(channels=m_channels * 8) | |
self.fuse_mode1234 = AFF(channels=m_channels * 16) | |
self.n_stats = 1 if pooling_func == "TAP" or pooling_func == "TSDP" else 2 | |
self.pool = getattr(pooling_layers, pooling_func)( | |
in_dim=self.stats_dim * block.expansion | |
) | |
self.seg_1 = nn.Linear( | |
self.stats_dim * block.expansion * self.n_stats, embedding_size | |
) | |
if self.two_emb_layer: | |
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False) | |
self.seg_2 = nn.Linear(embedding_size, embedding_size) | |
else: | |
self.seg_bn_1 = nn.Identity() | |
self.seg_2 = nn.Identity() | |
def _make_layer(self, block, planes, num_blocks, stride): | |
strides = [stride] + [1] * (num_blocks - 1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_planes, planes, stride)) | |
self.in_planes = planes * block.expansion | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
x = x.unsqueeze_(1) | |
out = F.relu(self.bn1(self.conv1(x))) | |
out1 = self.layer1(out) | |
out2 = self.layer2(out1) | |
out1_downsample = self.layer1_downsample(out1) | |
fuse_out12 = self.fuse_mode12(out2, out1_downsample) | |
out3 = self.layer3(out2) | |
fuse_out12_downsample = self.layer2_downsample(fuse_out12) | |
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) | |
out4 = self.layer4(out3) | |
fuse_out123_downsample = self.layer3_downsample(fuse_out123) | |
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample) | |
stats = self.pool(fuse_out1234) | |
embed_a = self.seg_1(stats) | |
if self.two_emb_layer: | |
out = F.relu(embed_a) | |
out = self.seg_bn_1(out) | |
embed_b = self.seg_2(out) | |
return embed_b | |
else: | |
return embed_a | |
class BasicBlockRes2Net(nn.Module): | |
expansion = 2 | |
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2): | |
super(BasicBlockRes2Net, self).__init__() | |
width = int(math.floor(planes * (baseWidth / 64.0))) | |
self.conv1 = conv1x1(in_planes, width * scale, stride) | |
self.bn1 = nn.BatchNorm2d(width * scale) | |
self.nums = scale - 1 | |
convs = [] | |
bns = [] | |
for i in range(self.nums): | |
convs.append(conv3x3(width, width)) | |
bns.append(nn.BatchNorm2d(width)) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
self.relu = ReLU(inplace=True) | |
self.conv3 = conv1x1(width * scale, planes * self.expansion) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
self.stride = stride | |
self.width = width | |
self.scale = scale | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
spx = torch.split(out, self.width, 1) | |
for i in range(self.nums): | |
if i == 0: | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
sp = self.convs[i](sp) | |
sp = self.relu(self.bns[i](sp)) | |
if i == 0: | |
out = sp | |
else: | |
out = torch.cat((out, sp), 1) | |
out = torch.cat((out, spx[self.nums]), 1) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
residual = self.shortcut(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Res2Net(nn.Module): | |
def __init__( | |
self, | |
block=BasicBlockRes2Net, | |
num_blocks=[3, 4, 6, 3], | |
m_channels=32, | |
feat_dim=80, | |
embedding_size=192, | |
pooling_func="TSTP", | |
two_emb_layer=False, | |
): | |
super(Res2Net, self).__init__() | |
self.in_planes = m_channels | |
self.feat_dim = feat_dim | |
self.embedding_size = embedding_size | |
self.stats_dim = int(feat_dim / 8) * m_channels * 8 | |
self.two_emb_layer = two_emb_layer | |
self.conv1 = nn.Conv2d( | |
1, m_channels, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.bn1 = nn.BatchNorm2d(m_channels) | |
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer(block, m_channels * 4, num_blocks[2], stride=2) | |
self.layer4 = self._make_layer(block, m_channels * 8, num_blocks[3], stride=2) | |
self.n_stats = 1 if pooling_func == "TAP" or pooling_func == "TSDP" else 2 | |
self.pool = getattr(pooling_layers, pooling_func)( | |
in_dim=self.stats_dim * block.expansion | |
) | |
self.seg_1 = nn.Linear( | |
self.stats_dim * block.expansion * self.n_stats, embedding_size | |
) | |
if self.two_emb_layer: | |
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False) | |
self.seg_2 = nn.Linear(embedding_size, embedding_size) | |
else: | |
self.seg_bn_1 = nn.Identity() | |
self.seg_2 = nn.Identity() | |
def _make_layer(self, block, planes, num_blocks, stride): | |
strides = [stride] + [1] * (num_blocks - 1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_planes, planes, stride)) | |
self.in_planes = planes * block.expansion | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
x = x.unsqueeze_(1) | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.layer1(out) | |
out = self.layer2(out) | |
out = self.layer3(out) | |
out = self.layer4(out) | |
stats = self.pool(out) | |
embed_a = self.seg_1(stats) | |
if self.two_emb_layer: | |
out = F.relu(embed_a) | |
out = self.seg_bn_1(out) | |
embed_b = self.seg_2(out) | |
return embed_b | |
else: | |
return embed_a | |