mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
3.45 kB
import numpy as np
import torch
import torch.multiprocessing
import torch.nn.functional as F
from itertools import combinations
from itertools import permutations
def generate_mapping_dict(max_speaker_num=6, max_olp_speaker_num=3):
all_kinds = []
all_kinds.append(0)
for i in range(max_olp_speaker_num):
selected_num = i + 1
coms = np.array(list(combinations(np.arange(max_speaker_num), selected_num)))
for com in coms:
tmp = np.zeros(max_speaker_num)
tmp[com] = 1
item = int(raw_dec_trans(tmp.reshape(1, -1), max_speaker_num)[0])
all_kinds.append(item)
all_kinds_order = sorted(all_kinds)
mapping_dict = {}
mapping_dict["dec2label"] = {}
mapping_dict["label2dec"] = {}
for i in range(len(all_kinds_order)):
dec = all_kinds_order[i]
mapping_dict["dec2label"][dec] = i
mapping_dict["label2dec"][i] = dec
oov_id = len(all_kinds_order)
mapping_dict["oov"] = oov_id
return mapping_dict
def raw_dec_trans(x, max_speaker_num):
num_list = []
for i in range(max_speaker_num):
num_list.append(x[:, i])
base = 1
T = x.shape[0]
res = np.zeros((T))
for num in num_list:
res += num * base
base = base * 2
return res
def mapping_func(num, mapping_dict):
if num in mapping_dict["dec2label"].keys():
label = mapping_dict["dec2label"][num]
else:
label = mapping_dict["oov"]
return label
def dec_trans(x, max_speaker_num, mapping_dict):
num_list = []
for i in range(max_speaker_num):
num_list.append(x[:, i])
base = 1
T = x.shape[0]
res = np.zeros((T))
for num in num_list:
res += num * base
base = base * 2
res = np.array([mapping_func(i, mapping_dict) for i in res])
return res
def create_powerlabel(label, mapping_dict, max_speaker_num=6, max_olp_speaker_num=3):
T, C = label.shape
padding_label = np.zeros((T, max_speaker_num))
padding_label[:, :C] = label
out_label = dec_trans(padding_label, max_speaker_num, mapping_dict)
out_label = torch.from_numpy(out_label)
return out_label
def generate_perm_pse(
label, n_speaker, mapping_dict, max_speaker_num, max_olp_speaker_num=3
):
perms = np.array(list(permutations(range(n_speaker)))).astype(np.float32)
perms = torch.from_numpy(perms).to(label.device).to(torch.int64)
perm_labels = [label[:, perm] for perm in perms]
perm_pse_labels = [
create_powerlabel(perm_label.cpu().numpy(), mapping_dict, max_speaker_num).to(
perm_label.device, non_blocking=True
)
for perm_label in perm_labels
]
return perm_labels, perm_pse_labels
def generate_min_pse(
label, n_speaker, mapping_dict, max_speaker_num, pse_logit, max_olp_speaker_num=3
):
perm_labels, perm_pse_labels = generate_perm_pse(
label,
n_speaker,
mapping_dict,
max_speaker_num,
max_olp_speaker_num=max_olp_speaker_num,
)
losses = [
F.cross_entropy(input=pse_logit, target=perm_pse_label.to(torch.long))
* len(pse_logit)
for perm_pse_label in perm_pse_labels
]
loss = torch.stack(losses)
min_index = torch.argmin(loss)
selected_perm_label, selected_pse_label = (
perm_labels[min_index],
perm_pse_labels[min_index],
)
return selected_perm_label, selected_pse_label