Step-Audio-TTS-3B / funasr_detach /models /eend /encoder_decoder_attractor.py
mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
3.08 kB
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
class EncoderDecoderAttractor(nn.Module):
def __init__(self, n_units, encoder_dropout=0.1, decoder_dropout=0.1):
super(EncoderDecoderAttractor, self).__init__()
self.enc0_dropout = nn.Dropout(encoder_dropout)
self.encoder = nn.LSTM(
n_units, n_units, 1, batch_first=True, dropout=encoder_dropout
)
self.dec0_dropout = nn.Dropout(decoder_dropout)
self.decoder = nn.LSTM(
n_units, n_units, 1, batch_first=True, dropout=decoder_dropout
)
self.counter = nn.Linear(n_units, 1)
self.n_units = n_units
def forward_core(self, xs, zeros):
ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).to(torch.int64)
xs = [self.enc0_dropout(x) for x in xs]
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
xs = nn.utils.rnn.pack_padded_sequence(
xs, ilens, batch_first=True, enforce_sorted=False
)
_, (hx, cx) = self.encoder(xs)
zlens = torch.from_numpy(np.array([z.shape[0] for z in zeros])).to(torch.int64)
max_zlen = torch.max(zlens).to(torch.int).item()
zeros = [self.enc0_dropout(z) for z in zeros]
zeros = nn.utils.rnn.pad_sequence(zeros, batch_first=True, padding_value=-1)
zeros = nn.utils.rnn.pack_padded_sequence(
zeros, zlens, batch_first=True, enforce_sorted=False
)
attractors, (_, _) = self.decoder(zeros, (hx, cx))
attractors = nn.utils.rnn.pad_packed_sequence(
attractors, batch_first=True, padding_value=-1, total_length=max_zlen
)[0]
attractors = [
att[: zlens[i].to(torch.int).item()] for i, att in enumerate(attractors)
]
return attractors
def forward(self, xs, n_speakers):
zeros = [
torch.zeros(n_spk + 1, self.n_units).to(torch.float32).to(xs[0].device)
for n_spk in n_speakers
]
attractors = self.forward_core(xs, zeros)
labels = torch.cat(
[
torch.from_numpy(np.array([[1] * n_spk + [0]], np.float32))
for n_spk in n_speakers
],
dim=1,
)
labels = labels.to(xs[0].device)
logit = torch.cat(
[
self.counter(att).view(-1, n_spk + 1)
for att, n_spk in zip(attractors, n_speakers)
],
dim=1,
)
loss = F.binary_cross_entropy(torch.sigmoid(logit), labels)
attractors = [att[slice(0, att.shape[0] - 1)] for att in attractors]
return loss, attractors
def estimate(self, xs, max_n_speakers=15):
zeros = [
torch.zeros(max_n_speakers, self.n_units).to(torch.float32).to(xs[0].device)
for _ in xs
]
attractors = self.forward_core(xs, zeros)
probs = [torch.sigmoid(torch.flatten(self.counter(att))) for att in attractors]
return attractors, probs