mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
9.97 kB
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict, List, Tuple, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from funasr_detach.frontends.wav_frontend import WavFrontendMel23
from funasr_detach.models.eend.encoder import EENDOLATransformerEncoder
from funasr_detach.models.eend.encoder_decoder_attractor import EncoderDecoderAttractor
from funasr_detach.models.eend.utils.losses import (
standard_loss,
cal_power_loss,
fast_batch_pit_n_speaker_loss,
)
from funasr_detach.models.eend.utils.power import create_powerlabel
from funasr_detach.models.eend.utils.power import generate_mapping_dict
from funasr_detach.train_utils.device_funcs import force_gatherable
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
pass
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
def pad_attractor(att, max_n_speakers):
C, D = att.shape
if C < max_n_speakers:
att = torch.cat(
[att, torch.zeros(max_n_speakers - C, D).to(torch.float32).to(att.device)],
dim=0,
)
return att
def pad_labels(ts, out_size):
for i, t in enumerate(ts):
if t.shape[1] < out_size:
ts[i] = F.pad(
t, (0, out_size - t.shape[1], 0, 0), mode="constant", value=0.0
)
return ts
def pad_results(ys, out_size):
ys_padded = []
for i, y in enumerate(ys):
if y.shape[1] < out_size:
ys_padded.append(
torch.cat(
[
y,
torch.zeros(y.shape[0], out_size - y.shape[1])
.to(torch.float32)
.to(y.device),
],
dim=1,
)
)
else:
ys_padded.append(y)
return ys_padded
class DiarEENDOLAModel(nn.Module):
"""EEND-OLA diarization model"""
def __init__(
self,
frontend: Optional[WavFrontendMel23],
encoder: EENDOLATransformerEncoder,
encoder_decoder_attractor: EncoderDecoderAttractor,
n_units: int = 256,
max_n_speaker: int = 8,
attractor_loss_weight: float = 1.0,
mapping_dict=None,
**kwargs,
):
super().__init__()
self.frontend = frontend
self.enc = encoder
self.encoder_decoder_attractor = encoder_decoder_attractor
self.attractor_loss_weight = attractor_loss_weight
self.max_n_speaker = max_n_speaker
if mapping_dict is None:
mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker)
self.mapping_dict = mapping_dict
# PostNet
self.postnet = nn.LSTM(self.max_n_speaker, n_units, 1, batch_first=True)
self.output_layer = nn.Linear(n_units, mapping_dict["oov"] + 1)
def forward_encoder(self, xs, ilens):
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
pad_shape = xs.shape
xs_mask = [torch.ones(ilen).to(xs.device) for ilen in ilens]
xs_mask = torch.nn.utils.rnn.pad_sequence(
xs_mask, batch_first=True, padding_value=0
).unsqueeze(-2)
emb = self.enc(xs, xs_mask)
emb = torch.split(emb.view(pad_shape[0], pad_shape[1], -1), 1, dim=0)
emb = [e[0][:ilen] for e, ilen in zip(emb, ilens)]
return emb
def forward_post_net(self, logits, ilens):
maxlen = torch.max(ilens).to(torch.int).item()
logits = nn.utils.rnn.pad_sequence(logits, batch_first=True, padding_value=-1)
logits = nn.utils.rnn.pack_padded_sequence(
logits, ilens.cpu().to(torch.int64), batch_first=True, enforce_sorted=False
)
outputs, (_, _) = self.postnet(logits)
outputs = nn.utils.rnn.pad_packed_sequence(
outputs, batch_first=True, padding_value=-1, total_length=maxlen
)[0]
outputs = [
output[: ilens[i].to(torch.int).item()] for i, output in enumerate(outputs)
]
outputs = [self.output_layer(output) for output in outputs]
return outputs
def forward(
self,
speech: List[torch.Tensor],
speaker_labels: List[torch.Tensor],
orders: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
# Check that batch_size is unified
assert len(speech) == len(speaker_labels), (len(speech), len(speaker_labels))
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
speaker_labels_lengths = torch.tensor(
[spk.shape[-1] for spk in speaker_labels]
).to(torch.int64)
batch_size = len(speech)
# Encoder
encoder_out = self.forward_encoder(speech, speech_lengths)
# Encoder-decoder attractor
attractor_loss, attractors = self.encoder_decoder_attractor(
[e[order] for e, order in zip(encoder_out, orders)], speaker_labels_lengths
)
speaker_logits = [
torch.matmul(e, att.permute(1, 0))
for e, att in zip(encoder_out, attractors)
]
# pit loss
pit_speaker_labels = fast_batch_pit_n_speaker_loss(
speaker_logits, speaker_labels
)
pit_loss = standard_loss(speaker_logits, pit_speaker_labels)
# pse loss
with torch.no_grad():
power_ts = [
create_powerlabel(
label.cpu().numpy(), self.mapping_dict, self.max_n_speaker
).to(encoder_out[0].device, non_blocking=True)
for label in pit_speaker_labels
]
pad_attractors = [pad_attractor(att, self.max_n_speaker) for att in attractors]
pse_speaker_logits = [
torch.matmul(e, pad_att.permute(1, 0))
for e, pad_att in zip(encoder_out, pad_attractors)
]
pse_speaker_logits = self.forward_post_net(pse_speaker_logits, speech_lengths)
pse_loss = cal_power_loss(pse_speaker_logits, power_ts)
loss = pse_loss + pit_loss + self.attractor_loss_weight * attractor_loss
stats = dict()
stats["pse_loss"] = pse_loss.detach()
stats["pit_loss"] = pit_loss.detach()
stats["attractor_loss"] = attractor_loss.detach()
stats["batch_size"] = batch_size
# Collect total loss stats
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def estimate_sequential(
self,
speech: torch.Tensor,
n_speakers: int = None,
shuffle: bool = True,
threshold: float = 0.5,
**kwargs,
):
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
emb = self.forward_encoder(speech, speech_lengths)
if shuffle:
orders = [np.arange(e.shape[0]) for e in emb]
for order in orders:
np.random.shuffle(order)
attractors, probs = self.encoder_decoder_attractor.estimate(
[
e[torch.from_numpy(order).to(torch.long).to(speech[0].device)]
for e, order in zip(emb, orders)
]
)
else:
attractors, probs = self.encoder_decoder_attractor.estimate(emb)
attractors_active = []
for p, att, e in zip(probs, attractors, emb):
if n_speakers and n_speakers >= 0:
att = att[:n_speakers,]
attractors_active.append(att)
elif threshold is not None:
silence = torch.nonzero(p < threshold)[0]
n_spk = silence[0] if silence.size else None
att = att[:n_spk,]
attractors_active.append(att)
else:
NotImplementedError("n_speakers or threshold has to be given.")
raw_n_speakers = [att.shape[0] for att in attractors_active]
attractors = [
(
pad_attractor(att, self.max_n_speaker)
if att.shape[0] <= self.max_n_speaker
else att[: self.max_n_speaker]
)
for att in attractors_active
]
ys = [torch.matmul(e, att.permute(1, 0)) for e, att in zip(emb, attractors)]
logits = self.forward_post_net(ys, speech_lengths)
ys = [
self.recover_y_from_powerlabel(logit, raw_n_speaker)
for logit, raw_n_speaker in zip(logits, raw_n_speakers)
]
return ys, emb, attractors, raw_n_speakers
def recover_y_from_powerlabel(self, logit, n_speaker):
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1)
oov_index = torch.where(pred == self.mapping_dict["oov"])[0]
for i in oov_index:
if i > 0:
pred[i] = pred[i - 1]
else:
pred[i] = 0
pred = [self.inv_mapping_func(i) for i in pred]
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
decisions = (
torch.from_numpy(
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)
)
.to(logit.device)
.to(torch.float32)
)
decisions = decisions[:, :n_speaker]
return decisions
def inv_mapping_func(self, label):
if not isinstance(label, int):
label = int(label)
if label in self.mapping_dict["label2dec"].keys():
num = self.mapping_dict["label2dec"][label]
else:
num = -1
return num
def collect_feats(self, **batch: torch.Tensor) -> Dict[str, torch.Tensor]:
pass