Spaces:
Runtime error
Runtime error
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from typing import Dict, List, Tuple, Optional | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from funasr_detach.frontends.wav_frontend import WavFrontendMel23 | |
from funasr_detach.models.eend.encoder import EENDOLATransformerEncoder | |
from funasr_detach.models.eend.encoder_decoder_attractor import EncoderDecoderAttractor | |
from funasr_detach.models.eend.utils.losses import ( | |
standard_loss, | |
cal_power_loss, | |
fast_batch_pit_n_speaker_loss, | |
) | |
from funasr_detach.models.eend.utils.power import create_powerlabel | |
from funasr_detach.models.eend.utils.power import generate_mapping_dict | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
pass | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
def pad_attractor(att, max_n_speakers): | |
C, D = att.shape | |
if C < max_n_speakers: | |
att = torch.cat( | |
[att, torch.zeros(max_n_speakers - C, D).to(torch.float32).to(att.device)], | |
dim=0, | |
) | |
return att | |
def pad_labels(ts, out_size): | |
for i, t in enumerate(ts): | |
if t.shape[1] < out_size: | |
ts[i] = F.pad( | |
t, (0, out_size - t.shape[1], 0, 0), mode="constant", value=0.0 | |
) | |
return ts | |
def pad_results(ys, out_size): | |
ys_padded = [] | |
for i, y in enumerate(ys): | |
if y.shape[1] < out_size: | |
ys_padded.append( | |
torch.cat( | |
[ | |
y, | |
torch.zeros(y.shape[0], out_size - y.shape[1]) | |
.to(torch.float32) | |
.to(y.device), | |
], | |
dim=1, | |
) | |
) | |
else: | |
ys_padded.append(y) | |
return ys_padded | |
class DiarEENDOLAModel(nn.Module): | |
"""EEND-OLA diarization model""" | |
def __init__( | |
self, | |
frontend: Optional[WavFrontendMel23], | |
encoder: EENDOLATransformerEncoder, | |
encoder_decoder_attractor: EncoderDecoderAttractor, | |
n_units: int = 256, | |
max_n_speaker: int = 8, | |
attractor_loss_weight: float = 1.0, | |
mapping_dict=None, | |
**kwargs, | |
): | |
super().__init__() | |
self.frontend = frontend | |
self.enc = encoder | |
self.encoder_decoder_attractor = encoder_decoder_attractor | |
self.attractor_loss_weight = attractor_loss_weight | |
self.max_n_speaker = max_n_speaker | |
if mapping_dict is None: | |
mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker) | |
self.mapping_dict = mapping_dict | |
# PostNet | |
self.postnet = nn.LSTM(self.max_n_speaker, n_units, 1, batch_first=True) | |
self.output_layer = nn.Linear(n_units, mapping_dict["oov"] + 1) | |
def forward_encoder(self, xs, ilens): | |
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1) | |
pad_shape = xs.shape | |
xs_mask = [torch.ones(ilen).to(xs.device) for ilen in ilens] | |
xs_mask = torch.nn.utils.rnn.pad_sequence( | |
xs_mask, batch_first=True, padding_value=0 | |
).unsqueeze(-2) | |
emb = self.enc(xs, xs_mask) | |
emb = torch.split(emb.view(pad_shape[0], pad_shape[1], -1), 1, dim=0) | |
emb = [e[0][:ilen] for e, ilen in zip(emb, ilens)] | |
return emb | |
def forward_post_net(self, logits, ilens): | |
maxlen = torch.max(ilens).to(torch.int).item() | |
logits = nn.utils.rnn.pad_sequence(logits, batch_first=True, padding_value=-1) | |
logits = nn.utils.rnn.pack_padded_sequence( | |
logits, ilens.cpu().to(torch.int64), batch_first=True, enforce_sorted=False | |
) | |
outputs, (_, _) = self.postnet(logits) | |
outputs = nn.utils.rnn.pad_packed_sequence( | |
outputs, batch_first=True, padding_value=-1, total_length=maxlen | |
)[0] | |
outputs = [ | |
output[: ilens[i].to(torch.int).item()] for i, output in enumerate(outputs) | |
] | |
outputs = [self.output_layer(output) for output in outputs] | |
return outputs | |
def forward( | |
self, | |
speech: List[torch.Tensor], | |
speaker_labels: List[torch.Tensor], | |
orders: torch.Tensor, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
# Check that batch_size is unified | |
assert len(speech) == len(speaker_labels), (len(speech), len(speaker_labels)) | |
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64) | |
speaker_labels_lengths = torch.tensor( | |
[spk.shape[-1] for spk in speaker_labels] | |
).to(torch.int64) | |
batch_size = len(speech) | |
# Encoder | |
encoder_out = self.forward_encoder(speech, speech_lengths) | |
# Encoder-decoder attractor | |
attractor_loss, attractors = self.encoder_decoder_attractor( | |
[e[order] for e, order in zip(encoder_out, orders)], speaker_labels_lengths | |
) | |
speaker_logits = [ | |
torch.matmul(e, att.permute(1, 0)) | |
for e, att in zip(encoder_out, attractors) | |
] | |
# pit loss | |
pit_speaker_labels = fast_batch_pit_n_speaker_loss( | |
speaker_logits, speaker_labels | |
) | |
pit_loss = standard_loss(speaker_logits, pit_speaker_labels) | |
# pse loss | |
with torch.no_grad(): | |
power_ts = [ | |
create_powerlabel( | |
label.cpu().numpy(), self.mapping_dict, self.max_n_speaker | |
).to(encoder_out[0].device, non_blocking=True) | |
for label in pit_speaker_labels | |
] | |
pad_attractors = [pad_attractor(att, self.max_n_speaker) for att in attractors] | |
pse_speaker_logits = [ | |
torch.matmul(e, pad_att.permute(1, 0)) | |
for e, pad_att in zip(encoder_out, pad_attractors) | |
] | |
pse_speaker_logits = self.forward_post_net(pse_speaker_logits, speech_lengths) | |
pse_loss = cal_power_loss(pse_speaker_logits, power_ts) | |
loss = pse_loss + pit_loss + self.attractor_loss_weight * attractor_loss | |
stats = dict() | |
stats["pse_loss"] = pse_loss.detach() | |
stats["pit_loss"] = pit_loss.detach() | |
stats["attractor_loss"] = attractor_loss.detach() | |
stats["batch_size"] = batch_size | |
# Collect total loss stats | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def estimate_sequential( | |
self, | |
speech: torch.Tensor, | |
n_speakers: int = None, | |
shuffle: bool = True, | |
threshold: float = 0.5, | |
**kwargs, | |
): | |
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64) | |
emb = self.forward_encoder(speech, speech_lengths) | |
if shuffle: | |
orders = [np.arange(e.shape[0]) for e in emb] | |
for order in orders: | |
np.random.shuffle(order) | |
attractors, probs = self.encoder_decoder_attractor.estimate( | |
[ | |
e[torch.from_numpy(order).to(torch.long).to(speech[0].device)] | |
for e, order in zip(emb, orders) | |
] | |
) | |
else: | |
attractors, probs = self.encoder_decoder_attractor.estimate(emb) | |
attractors_active = [] | |
for p, att, e in zip(probs, attractors, emb): | |
if n_speakers and n_speakers >= 0: | |
att = att[:n_speakers,] | |
attractors_active.append(att) | |
elif threshold is not None: | |
silence = torch.nonzero(p < threshold)[0] | |
n_spk = silence[0] if silence.size else None | |
att = att[:n_spk,] | |
attractors_active.append(att) | |
else: | |
NotImplementedError("n_speakers or threshold has to be given.") | |
raw_n_speakers = [att.shape[0] for att in attractors_active] | |
attractors = [ | |
( | |
pad_attractor(att, self.max_n_speaker) | |
if att.shape[0] <= self.max_n_speaker | |
else att[: self.max_n_speaker] | |
) | |
for att in attractors_active | |
] | |
ys = [torch.matmul(e, att.permute(1, 0)) for e, att in zip(emb, attractors)] | |
logits = self.forward_post_net(ys, speech_lengths) | |
ys = [ | |
self.recover_y_from_powerlabel(logit, raw_n_speaker) | |
for logit, raw_n_speaker in zip(logits, raw_n_speakers) | |
] | |
return ys, emb, attractors, raw_n_speakers | |
def recover_y_from_powerlabel(self, logit, n_speaker): | |
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1) | |
oov_index = torch.where(pred == self.mapping_dict["oov"])[0] | |
for i in oov_index: | |
if i > 0: | |
pred[i] = pred[i - 1] | |
else: | |
pred[i] = 0 | |
pred = [self.inv_mapping_func(i) for i in pred] | |
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred] | |
decisions = ( | |
torch.from_numpy( | |
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0) | |
) | |
.to(logit.device) | |
.to(torch.float32) | |
) | |
decisions = decisions[:, :n_speaker] | |
return decisions | |
def inv_mapping_func(self, label): | |
if not isinstance(label, int): | |
label = int(label) | |
if label in self.mapping_dict["label2dec"].keys(): | |
num = self.mapping_dict["label2dec"][label] | |
else: | |
num = -1 | |
return num | |
def collect_feats(self, **batch: torch.Tensor) -> Dict[str, torch.Tensor]: | |
pass | |