mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
20.6 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from funasr_detach.models.data2vec.data_utils import compute_mask_indices
from funasr_detach.models.data2vec.ema_module import EMAModule
from funasr_detach.models.data2vec.grad_multiply import GradMultiply
from funasr_detach.models.data2vec.wav2vec2 import (
ConvFeatureExtractionModel,
TransformerEncoder,
)
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
def get_annealed_rate(start, end, curr_step, total_steps):
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
class Data2VecEncoder(nn.Module):
def __init__(
self,
# for ConvFeatureExtractionModel
input_size: int = None,
extractor_mode: str = None,
conv_feature_layers: str = "[(512,2,2)] + [(512,2,2)]",
# for Transformer Encoder
## model architecture
layer_type: str = "transformer",
layer_norm_first: bool = False,
encoder_layers: int = 12,
encoder_embed_dim: int = 768,
encoder_ffn_embed_dim: int = 3072,
encoder_attention_heads: int = 12,
activation_fn: str = "gelu",
## dropouts
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.0,
encoder_layerdrop: float = 0.0,
dropout_input: float = 0.0,
dropout_features: float = 0.0,
## grad settings
feature_grad_mult: float = 1.0,
## masking
mask_prob: float = 0.65,
mask_length: int = 10,
mask_selection: str = "static",
mask_other: int = 0,
no_mask_overlap: bool = False,
mask_min_space: int = 1,
require_same_masks: bool = True, # if set as True, collate_fn should be clipping
mask_dropout: float = 0.0,
## channel masking
mask_channel_length: int = 10,
mask_channel_prob: float = 0.0,
mask_channel_before: bool = False,
mask_channel_selection: str = "static",
mask_channel_other: int = 0,
no_mask_channel_overlap: bool = False,
mask_channel_min_space: int = 1,
## positional embeddings
conv_pos: int = 128,
conv_pos_groups: int = 16,
pos_conv_depth: int = 1,
max_positions: int = 100000,
# EMA module
average_top_k_layers: int = 8,
layer_norm_target_layer: bool = False,
instance_norm_target_layer: bool = False,
instance_norm_targets: bool = False,
layer_norm_targets: bool = False,
batch_norm_target_layer: bool = False,
group_norm_target_layer: bool = False,
ema_decay: float = 0.999,
ema_end_decay: float = 0.9999,
ema_anneal_end_step: int = 100000,
ema_transformer_only: bool = True,
ema_layers_only: bool = True,
min_target_var: float = 0.1,
min_pred_var: float = 0.01,
# Loss
loss_beta: float = 0.0,
loss_scale: float = None,
# FP16 optimization
required_seq_len_multiple: int = 2,
):
super().__init__()
# ConvFeatureExtractionModel
self.conv_feature_layers = conv_feature_layers
feature_enc_layers = eval(conv_feature_layers)
self.extractor_embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=extractor_mode,
in_d=input_size,
)
# Transformer Encoder
## model architecture
self.layer_type = layer_type
self.layer_norm_first = layer_norm_first
self.encoder_layers = encoder_layers
self.encoder_embed_dim = encoder_embed_dim
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
self.encoder_attention_heads = encoder_attention_heads
self.activation_fn = activation_fn
## dropout
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.dropout_input = dropout_input
self.dropout_features = dropout_features
## grad settings
self.feature_grad_mult = feature_grad_mult
## masking
self.mask_prob = mask_prob
self.mask_length = mask_length
self.mask_selection = mask_selection
self.mask_other = mask_other
self.no_mask_overlap = no_mask_overlap
self.mask_min_space = mask_min_space
self.require_same_masks = (
require_same_masks # if set as True, collate_fn should be clipping
)
self.mask_dropout = mask_dropout
## channel masking
self.mask_channel_length = mask_channel_length
self.mask_channel_prob = mask_channel_prob
self.mask_channel_before = mask_channel_before
self.mask_channel_selection = mask_channel_selection
self.mask_channel_other = mask_channel_other
self.no_mask_channel_overlap = no_mask_channel_overlap
self.mask_channel_min_space = mask_channel_min_space
## positional embeddings
self.conv_pos = conv_pos
self.conv_pos_groups = conv_pos_groups
self.pos_conv_depth = pos_conv_depth
self.max_positions = max_positions
self.mask_emb = nn.Parameter(
torch.FloatTensor(self.encoder_embed_dim).uniform_()
)
self.encoder = TransformerEncoder(
dropout=self.dropout,
encoder_embed_dim=self.encoder_embed_dim,
required_seq_len_multiple=required_seq_len_multiple,
pos_conv_depth=self.pos_conv_depth,
conv_pos=self.conv_pos,
conv_pos_groups=self.conv_pos_groups,
# transformer layers
layer_type=self.layer_type,
encoder_layers=self.encoder_layers,
encoder_ffn_embed_dim=self.encoder_ffn_embed_dim,
encoder_attention_heads=self.encoder_attention_heads,
attention_dropout=self.attention_dropout,
activation_dropout=self.activation_dropout,
activation_fn=self.activation_fn,
layer_norm_first=self.layer_norm_first,
encoder_layerdrop=self.encoder_layerdrop,
max_positions=self.max_positions,
)
## projections and dropouts
self.post_extract_proj = nn.Linear(self.extractor_embed, self.encoder_embed_dim)
self.dropout_input = nn.Dropout(self.dropout_input)
self.dropout_features = nn.Dropout(self.dropout_features)
self.layer_norm = torch.nn.LayerNorm(self.extractor_embed)
self.final_proj = nn.Linear(self.encoder_embed_dim, self.encoder_embed_dim)
# EMA module
self.average_top_k_layers = average_top_k_layers
self.layer_norm_target_layer = layer_norm_target_layer
self.instance_norm_target_layer = instance_norm_target_layer
self.instance_norm_targets = instance_norm_targets
self.layer_norm_targets = layer_norm_targets
self.batch_norm_target_layer = batch_norm_target_layer
self.group_norm_target_layer = group_norm_target_layer
self.ema_decay = ema_decay
self.ema_end_decay = ema_end_decay
self.ema_anneal_end_step = ema_anneal_end_step
self.ema_transformer_only = ema_transformer_only
self.ema_layers_only = ema_layers_only
self.min_target_var = min_target_var
self.min_pred_var = min_pred_var
self.ema = None
# Loss
self.loss_beta = loss_beta
self.loss_scale = loss_scale
# FP16 optimization
self.required_seq_len_multiple = required_seq_len_multiple
self.num_updates = 0
logging.info("Data2VecEncoder settings: {}".format(self.__dict__))
def make_ema_teacher(self):
skip_keys = set()
if self.ema_layers_only:
self.ema_transformer_only = True
for k, _ in self.encoder.pos_conv.named_parameters():
skip_keys.add(f"pos_conv.{k}")
self.ema = EMAModule(
self.encoder if self.ema_transformer_only else self,
ema_decay=self.ema_decay,
ema_fp32=True,
skip_keys=skip_keys,
)
def set_num_updates(self, num_updates):
if self.ema is None and self.final_proj is not None:
logging.info("Making EMA Teacher")
self.make_ema_teacher()
elif self.training and self.ema is not None:
if self.ema_decay != self.ema_end_decay:
if num_updates >= self.ema_anneal_end_step:
decay = self.ema_end_decay
else:
decay = get_annealed_rate(
self.ema_decay,
self.ema_end_decay,
num_updates,
self.ema_anneal_end_step,
)
self.ema.set_decay(decay)
if self.ema.get_decay() < 1:
self.ema.step(self.encoder if self.ema_transformer_only else self)
self.num_updates = num_updates
def apply_mask(
self,
x,
padding_mask,
mask_indices=None,
mask_channel_indices=None,
):
B, T, C = x.shape
if self.mask_channel_prob > 0 and self.mask_channel_before:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
if self.mask_prob > 0:
if mask_indices is None:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=1,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
require_same_masks=self.require_same_masks,
mask_dropout=self.mask_dropout,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0 and not self.mask_channel_before:
if mask_channel_indices is None:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
return torch.floor(
(input_length - kernel_size).to(torch.float32) / stride + 1
)
conv_cfg_list = eval(self.conv_feature_layers)
for i in range(len(conv_cfg_list)):
input_lengths = _conv_out_length(
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
)
return input_lengths.to(torch.long)
def forward(
self,
xs_pad,
ilens=None,
mask=False,
features_only=True,
layer=None,
mask_indices=None,
mask_channel_indices=None,
padding_count=None,
):
# create padding_mask by ilens
if ilens is not None:
padding_mask = make_pad_mask(lengths=ilens).to(xs_pad.device)
else:
padding_mask = None
features = xs_pad
if self.feature_grad_mult > 0:
features = self.feature_extractor(features)
if self.feature_grad_mult != 1.0:
features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = self.feature_extractor(features)
features = features.transpose(1, 2)
features = self.layer_norm(features)
orig_padding_mask = padding_mask
if padding_mask is not None:
input_lengths = (1 - padding_mask.long()).sum(-1)
# apply conv formula to get real output_lengths
output_lengths = self._get_feat_extract_output_lengths(input_lengths)
padding_mask = torch.zeros(
features.shape[:2], dtype=features.dtype, device=features.device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
padding_mask[
(
torch.arange(padding_mask.shape[0], device=padding_mask.device),
output_lengths - 1,
)
] = 1
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
else:
padding_mask = None
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
pre_encoder_features = None
if self.ema_transformer_only:
pre_encoder_features = features.clone()
features = self.dropout_input(features)
if mask:
x, mask_indices = self.apply_mask(
features,
padding_mask,
mask_indices=mask_indices,
mask_channel_indices=mask_channel_indices,
)
else:
x = features
mask_indices = None
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
layer=layer,
)
if features_only:
encoder_out_lens = (1 - padding_mask.long()).sum(1)
return x, encoder_out_lens, None
result = {
"losses": {},
"padding_mask": padding_mask,
"x": x,
}
with torch.no_grad():
self.ema.model.eval()
if self.ema_transformer_only:
y, layer_results = self.ema.model.extract_features(
pre_encoder_features,
padding_mask=padding_mask,
min_layer=self.encoder_layers - self.average_top_k_layers,
)
y = {
"x": y,
"padding_mask": padding_mask,
"layer_results": layer_results,
}
else:
y = self.ema.model.extract_features(
source=xs_pad,
padding_mask=orig_padding_mask,
mask=False,
)
target_layer_results = [l[2] for l in y["layer_results"]]
permuted = False
if self.instance_norm_target_layer or self.batch_norm_target_layer:
target_layer_results = [
tl.permute(1, 2, 0) for tl in target_layer_results # TBC -> BCT
]
permuted = True
if self.batch_norm_target_layer:
target_layer_results = [
F.batch_norm(
tl.float(), running_mean=None, running_var=None, training=True
)
for tl in target_layer_results
]
if self.instance_norm_target_layer:
target_layer_results = [
F.instance_norm(tl.float()) for tl in target_layer_results
]
if permuted:
target_layer_results = [
tl.transpose(1, 2) for tl in target_layer_results # BCT -> BTC
]
if self.group_norm_target_layer:
target_layer_results = [
F.layer_norm(tl.float(), tl.shape[-2:])
for tl in target_layer_results
]
if self.layer_norm_target_layer:
target_layer_results = [
F.layer_norm(tl.float(), tl.shape[-1:])
for tl in target_layer_results
]
y = sum(target_layer_results) / len(target_layer_results)
if self.layer_norm_targets:
y = F.layer_norm(y.float(), y.shape[-1:])
if self.instance_norm_targets:
y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)
if not permuted:
y = y.transpose(0, 1)
y = y[mask_indices]
x = x[mask_indices]
x = self.final_proj(x)
sz = x.size(-1)
if self.loss_beta == 0:
loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1)
else:
loss = F.smooth_l1_loss(
x.float(), y.float(), reduction="none", beta=self.loss_beta
).sum(dim=-1)
if self.loss_scale is not None:
scale = self.loss_scale
else:
scale = 1 / math.sqrt(sz)
result["losses"]["regression"] = loss.sum() * scale
if "sample_size" not in result:
result["sample_size"] = loss.numel()
with torch.no_grad():
result["target_var"] = self.compute_var(y)
result["pred_var"] = self.compute_var(x.float())
if self.num_updates > 5000 and result["target_var"] < self.min_target_var:
logging.error(
f"target var is {result['target_var'].item()} < {self.min_target_var}, exiting"
)
raise Exception(
f"target var is {result['target_var'].item()} < {self.min_target_var}, exiting"
)
if self.num_updates > 5000 and result["pred_var"] < self.min_pred_var:
logging.error(
f"pred var is {result['pred_var'].item()} < {self.min_pred_var}, exiting"
)
raise Exception(
f"pred var is {result['pred_var'].item()} < {self.min_pred_var}, exiting"
)
if self.ema is not None:
result["ema_decay"] = self.ema.get_decay() * 1000
return result
@staticmethod
def compute_var(y):
y = y.view(-1, y.size(-1))
if dist.is_initialized():
zc = torch.tensor(y.size(0)).cuda()
zs = y.sum(dim=0)
zss = (y**2).sum(dim=0)
dist.all_reduce(zc)
dist.all_reduce(zs)
dist.all_reduce(zss)
var = zss / (zc - 1) - (zs**2) / (zc * (zc - 1))
return torch.sqrt(var + 1e-6).mean()
else:
return torch.sqrt(y.var(dim=0) + 1e-6).mean()
def extract_features(self, xs_pad, ilens, mask=False, layer=None):
res = self.forward(
xs_pad,
ilens,
mask=mask,
features_only=True,
layer=layer,
)
return res
def remove_pretraining_modules(self, last_layer=None):
self.final_proj = None
self.ema = None
if last_layer is not None:
self.encoder.layers = nn.ModuleList(
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
)
def output_size(self) -> int:
return self.encoder_embed_dim