Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from typing import Dict | |
from typing import Optional | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
# from funasr_detach.layers.abs_normalize import AbsNormalize | |
# from funasr_detach.models.base_model import FunASRModel | |
# from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
from funasr_detach.frontends.abs_frontend import AbsFrontend | |
# from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder | |
# from funasr_detach.models.specaug.abs_specaug import AbsSpecAug | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class Data2VecPretrainModel(nn.Module): | |
"""Data2Vec Pretrain model""" | |
def __init__( | |
self, | |
frontend=None, | |
specaug=None, | |
normalize=None, | |
encoder=None, | |
preencoder=None, | |
): | |
super().__init__() | |
self.frontend = frontend | |
self.specaug = specaug | |
self.normalize = normalize | |
self.preencoder = preencoder | |
self.encoder = encoder | |
self.num_updates = 0 | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Frontend + Encoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
""" | |
# Check that batch_size is unified | |
assert speech.shape[0] == speech_lengths.shape[0], ( | |
speech.shape, | |
speech_lengths.shape, | |
) | |
self.encoder.set_num_updates(self.num_updates) | |
# 1. Encoder | |
encoder_out = self.encode(speech, speech_lengths) | |
losses = encoder_out["losses"] | |
loss = sum(losses.values()) | |
sample_size = encoder_out["sample_size"] | |
loss = loss.sum() / sample_size | |
target_var = float(encoder_out["target_var"]) | |
pred_var = float(encoder_out["pred_var"]) | |
ema_decay = float(encoder_out["ema_decay"]) | |
stats = dict( | |
loss=torch.clone(loss.detach()), | |
target_var=target_var, | |
pred_var=pred_var, | |
ema_decay=ema_decay, | |
) | |
loss, stats, weight = force_gatherable((loss, stats, sample_size), loss.device) | |
return loss, stats, weight | |
def collect_feats( | |
self, speech: torch.Tensor, speech_lengths: torch.Tensor | |
) -> Dict[str, torch.Tensor]: | |
feats, feats_lengths = self._extract_feats(speech, speech_lengths) | |
return {"feats": feats, "feats_lengths": feats_lengths} | |
def encode( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
): | |
"""Frontend + Encoder. | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
""" | |
with autocast(False): | |
# 1. Extract feats | |
feats, feats_lengths = self._extract_feats(speech, speech_lengths) | |
# 2. Data augmentation | |
if self.specaug is not None and self.training: | |
feats, feats_lengths = self.specaug(feats, feats_lengths) | |
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
feats, feats_lengths = self.normalize(feats, feats_lengths) | |
# Pre-encoder, e.g. used for raw input data | |
if self.preencoder is not None: | |
feats, feats_lengths = self.preencoder(feats, feats_lengths) | |
# 4. Forward encoder | |
if min(speech_lengths) == max( | |
speech_lengths | |
): # for clipping, set speech_lengths as None | |
speech_lengths = None | |
encoder_out = self.encoder( | |
feats, speech_lengths, mask=True, features_only=False | |
) | |
return encoder_out | |
def _extract_feats( | |
self, speech: torch.Tensor, speech_lengths: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
assert speech_lengths.dim() == 1, speech_lengths.shape | |
# for data-parallel | |
speech = speech[:, : speech_lengths.max()] | |
if self.frontend is not None: | |
# Frontend | |
# e.g. STFT and Feature extract | |
# data_loader may send time-domain signal in this case | |
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) | |
feats, feats_lengths = self.frontend(speech, speech_lengths) | |
else: | |
# No frontend and no feature extract | |
feats, feats_lengths = speech, speech_lengths | |
return feats, feats_lengths | |
def set_num_updates(self, num_updates): | |
self.num_updates = num_updates | |
def get_num_updates(self): | |
return self.num_updates | |