mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
24 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os
import re
import time
import torch
import codecs
import logging
import tempfile
import requests
import numpy as np
from typing import Dict, Tuple
from contextlib import contextmanager
from distutils.version import LooseVersion
from funasr_detach.register import tables
from funasr_detach.losses.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
)
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.models.paraformer.model import Paraformer
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
@tables.register("model_classes", "ContextualParaformer")
class ContextualParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
FunASR: A Fundamental End-to-End Speech Recognition Toolkit
https://arxiv.org/abs/2305.11013
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.target_buffer_length = kwargs.get("target_buffer_length", -1)
inner_dim = kwargs.get("inner_dim", 256)
bias_encoder_type = kwargs.get("bias_encoder_type", "lstm")
use_decoder_embedding = kwargs.get("use_decoder_embedding", False)
crit_attn_weight = kwargs.get("crit_attn_weight", 0.0)
crit_attn_smooth = kwargs.get("crit_attn_smooth", 0.0)
bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0)
if bias_encoder_type == "lstm":
self.bias_encoder = torch.nn.LSTM(
inner_dim,
inner_dim,
1,
batch_first=True,
dropout=bias_encoder_dropout_rate,
)
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim)
elif bias_encoder_type == "mean":
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim)
else:
logging.error("Unsupport bias encoder type: {}".format(bias_encoder_type))
if self.target_buffer_length > 0:
self.hotword_buffer = None
self.length_record = []
self.current_buffer_length = 0
self.use_decoder_embedding = use_decoder_embedding
self.crit_attn_weight = crit_attn_weight
if self.crit_attn_weight > 0:
self.attn_loss = torch.nn.L1Loss()
self.crit_attn_smooth = crit_attn_smooth
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
hotword_pad = kwargs.get("hotword_pad")
hotword_lengths = kwargs.get("hotword_lengths")
dha_pad = kwargs.get("dha_pad")
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# 2b. Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre, loss_ideal = (
self._calc_att_clas_loss(
encoder_out,
encoder_out_lens,
text,
text_lengths,
hotword_pad,
hotword_lengths,
)
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight
else:
loss = (
self.ctc_weight * loss_ctc
+ (1 - self.ctc_weight) * loss_att
+ loss_pre * self.predictor_weight
)
if loss_ideal is not None:
loss = loss + loss_ideal * self.crit_attn_weight
stats["loss_ideal"] = loss_ideal.detach().cpu()
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + self.predictor_bias).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _calc_att_clas_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
hotword_pad: torch.Tensor,
hotword_lengths: torch.Tensor,
):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, _ = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)
# -1. bias encoder
if self.use_decoder_embedding:
hw_embed = self.decoder.embed(hotword_pad)
else:
hw_embed = self.bias_embed(hotword_pad)
hw_embed, (_, _) = self.bias_encoder(hw_embed)
_ind = np.arange(0, hotword_pad.shape[0]).tolist()
selected = hw_embed[
_ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()]
]
contextual_info = (
selected.squeeze(0).repeat(ys_pad.shape[0], 1, 1).to(ys_pad.device)
)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
if self.step_cur < 2:
logging.info(
"enable sampler in paraformer, sampling_ratio: {}".format(
self.sampling_ratio
)
)
sematic_embeds, decoder_out_1st = self.sampler(
encoder_out,
encoder_out_lens,
ys_pad,
ys_pad_lens,
pre_acoustic_embeds,
contextual_info,
)
else:
if self.step_cur < 2:
logging.info(
"disable sampler in paraformer, sampling_ratio: {}".format(
self.sampling_ratio
)
)
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
contextual_info=contextual_info,
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
"""
if self.crit_attn_weight > 0 and attn.shape[-1] > 1:
ideal_attn = ideal_attn + self.crit_attn_smooth / (self.crit_attn_smooth + 1.0)
attn_non_blank = attn[:,:,:,:-1]
ideal_attn_non_blank = ideal_attn[:,:,:-1]
loss_ideal = self.attn_loss(attn_non_blank.max(1)[0], ideal_attn_non_blank.to(attn.device))
else:
loss_ideal = None
"""
loss_ideal = None
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(
ys_pad_lens.type_as(pre_token_length), pre_token_length
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre, loss_ideal
def sampler(
self,
encoder_out,
encoder_out_lens,
ys_pad,
ys_pad_lens,
pre_acoustic_embeds,
contextual_info,
):
tgt_mask = (
~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]
).to(ys_pad.device)
ys_pad = ys_pad * tgt_mask[:, :, 0]
if self.share_embedding:
ys_pad_embed = self.decoder.output_layer.weight[ys_pad]
else:
ys_pad_embed = self.decoder.embed(ys_pad)
with torch.no_grad():
decoder_outs = self.decoder(
encoder_out,
encoder_out_lens,
pre_acoustic_embeds,
ys_pad_lens,
contextual_info=contextual_info,
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
pred_tokens = decoder_out.argmax(-1)
nonpad_positions = ys_pad.ne(self.ignore_id)
seq_lens = (nonpad_positions).sum(1)
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
input_mask = torch.ones_like(nonpad_positions)
bsz, seq_len = ys_pad.size()
for li in range(bsz):
target_num = (
((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio
).long()
if target_num > 0:
input_mask[li].scatter_(
dim=0,
index=torch.randperm(seq_lens[li])[:target_num].to(
pre_acoustic_embeds.device
),
value=0,
)
input_mask = input_mask.eq(1)
input_mask = input_mask.masked_fill(~nonpad_positions, False)
input_mask_expand_dim = input_mask.unsqueeze(2).to(
pre_acoustic_embeds.device
)
sematic_embeds = pre_acoustic_embeds.masked_fill(
~input_mask_expand_dim, 0
) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0)
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
def cal_decoder_with_predictor(
self,
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
hw_list=None,
clas_scale=1.0,
):
if hw_list is None:
hw_list = [
torch.Tensor([1]).long().to(encoder_out.device)
] # empty hotword list
hw_list_pad = pad_list(hw_list, 0)
if self.use_decoder_embedding:
hw_embed = self.decoder.embed(hw_list_pad)
else:
hw_embed = self.bias_embed(hw_list_pad)
hw_embed, (h_n, _) = self.bias_encoder(hw_embed)
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1)
else:
hw_lengths = [len(i) for i in hw_list]
hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to(
encoder_out.device
)
if self.use_decoder_embedding:
hw_embed = self.decoder.embed(hw_list_pad)
else:
hw_embed = self.bias_embed(hw_list_pad)
hw_embed = torch.nn.utils.rnn.pack_padded_sequence(
hw_embed, hw_lengths, batch_first=True, enforce_sorted=False
)
_, (h_n, _) = self.bias_encoder(hw_embed)
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1)
decoder_outs = self.decoder(
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
contextual_info=hw_embed,
clas_scale=clas_scale,
)
decoder_out = decoder_outs[0]
decoder_out = torch.log_softmax(decoder_out, dim=-1)
return decoder_out, ys_pad_lens
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = (
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
)
is_use_lm = (
kwargs.get("lm_weight", 0.0) > 0.00001
and kwargs.get("lm_file", None) is not None
)
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000)
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list,
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# hotword
self.hotword_list = self.generate_hotwords_list(
kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend
)
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
predictor_outs[0],
predictor_outs[1],
predictor_outs[2],
predictor_outs[3],
)
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
decoder_outs = self.cal_decoder_with_predictor(
encoder_out,
encoder_out_lens,
pre_acoustic_embeds,
pre_token_length,
hw_list=self.hotword_list,
clas_scale=kwargs.get("clas_scale", 1.0),
)
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, : encoder_out_lens[i], :]
am_scores = decoder_out[i, : pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x,
am_scores=am_scores,
maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0),
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos
and x != self.sos
and x != self.blank_id,
token_int,
)
)
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
text_postprocessed, _ = postprocess_utils.sentence_postprocess(
token
)
result_i = {"key": key[i], "text": text_postprocessed}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data
def generate_hotwords_list(
self, hotword_list_or_file, tokenizer=None, frontend=None
):
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
def seg_tokenize(txt, seg_dict):
pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$")
out_txt = ""
for word in txt:
word = word.lower()
if word in seg_dict:
out_txt += seg_dict[word] + " "
else:
if pattern.match(word):
for char in word:
if char in seg_dict:
out_txt += seg_dict[char] + " "
else:
out_txt += "<unk>" + " "
else:
out_txt += "<unk>" + " "
return out_txt.strip().split()
seg_dict = None
if frontend.cmvn_file is not None:
model_dir = os.path.dirname(frontend.cmvn_file)
seg_dict_file = os.path.join(model_dir, "seg_dict")
if os.path.exists(seg_dict_file):
seg_dict = load_seg_dict(seg_dict_file)
else:
seg_dict = None
# for None
if hotword_list_or_file is None:
hotword_list = None
# for local txt inputs
elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith(
".txt"
):
logging.info("Attempting to parse hotwords from local txt...")
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, "r") as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append("<s>")
logging.info(
"Initialized hotword list from file: {}, hotword list: {}.".format(
hotword_list_or_file, hotword_str_list
)
)
# for url, download and generate txt
elif hotword_list_or_file.startswith("http"):
logging.info("Attempting to parse hotwords from url...")
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
text_file_path = os.path.join(
work_dir, os.path.basename(hotword_list_or_file)
)
local_file = requests.get(hotword_list_or_file)
open(text_file_path, "wb").write(local_file.content)
hotword_list_or_file = text_file_path
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, "r") as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append("<s>")
logging.info(
"Initialized hotword list from file: {}, hotword list: {}.".format(
hotword_list_or_file, hotword_str_list
)
)
# for text str input
elif not hotword_list_or_file.endswith(".txt"):
logging.info("Attempting to parse hotwords as str...")
hotword_list = []
hotword_str_list = []
for hw in hotword_list_or_file.strip().split():
hotword_str_list.append(hw)
hw_list = hw.strip().split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append("<s>")
logging.info("Hotword list: {}.".format(hotword_str_list))
else:
hotword_list = None
return hotword_list