Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import os | |
import re | |
import time | |
import torch | |
import codecs | |
import logging | |
import tempfile | |
import requests | |
import numpy as np | |
from typing import Dict, Tuple | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from funasr_detach.register import tables | |
from funasr_detach.losses.label_smoothing_loss import ( | |
LabelSmoothingLoss, # noqa: H301 | |
) | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.models.paraformer.model import Paraformer | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.search import Hypothesis | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class ContextualParaformer(Paraformer): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
FunASR: A Fundamental End-to-End Speech Recognition Toolkit | |
https://arxiv.org/abs/2305.11013 | |
""" | |
def __init__( | |
self, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
self.target_buffer_length = kwargs.get("target_buffer_length", -1) | |
inner_dim = kwargs.get("inner_dim", 256) | |
bias_encoder_type = kwargs.get("bias_encoder_type", "lstm") | |
use_decoder_embedding = kwargs.get("use_decoder_embedding", False) | |
crit_attn_weight = kwargs.get("crit_attn_weight", 0.0) | |
crit_attn_smooth = kwargs.get("crit_attn_smooth", 0.0) | |
bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0) | |
if bias_encoder_type == "lstm": | |
self.bias_encoder = torch.nn.LSTM( | |
inner_dim, | |
inner_dim, | |
1, | |
batch_first=True, | |
dropout=bias_encoder_dropout_rate, | |
) | |
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim) | |
elif bias_encoder_type == "mean": | |
self.bias_embed = torch.nn.Embedding(self.vocab_size, inner_dim) | |
else: | |
logging.error("Unsupport bias encoder type: {}".format(bias_encoder_type)) | |
if self.target_buffer_length > 0: | |
self.hotword_buffer = None | |
self.length_record = [] | |
self.current_buffer_length = 0 | |
self.use_decoder_embedding = use_decoder_embedding | |
self.crit_attn_weight = crit_attn_weight | |
if self.crit_attn_weight > 0: | |
self.attn_loss = torch.nn.L1Loss() | |
self.crit_attn_smooth = crit_attn_smooth | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Frontend + Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
hotword_pad = kwargs.get("hotword_pad") | |
hotword_lengths = kwargs.get("hotword_lengths") | |
dha_pad = kwargs.get("dha_pad") | |
# 1. Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
loss_ctc, cer_ctc = None, None | |
stats = dict() | |
# 1. CTC branch | |
if self.ctc_weight != 0.0: | |
loss_ctc, cer_ctc = self._calc_ctc_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
# Collect CTC branch stats | |
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
stats["cer_ctc"] = cer_ctc | |
# 2b. Attention decoder branch | |
loss_att, acc_att, cer_att, wer_att, loss_pre, loss_ideal = ( | |
self._calc_att_clas_loss( | |
encoder_out, | |
encoder_out_lens, | |
text, | |
text_lengths, | |
hotword_pad, | |
hotword_lengths, | |
) | |
) | |
# 3. CTC-Att loss definition | |
if self.ctc_weight == 0.0: | |
loss = loss_att + loss_pre * self.predictor_weight | |
else: | |
loss = ( | |
self.ctc_weight * loss_ctc | |
+ (1 - self.ctc_weight) * loss_att | |
+ loss_pre * self.predictor_weight | |
) | |
if loss_ideal is not None: | |
loss = loss + loss_ideal * self.crit_attn_weight | |
stats["loss_ideal"] = loss_ideal.detach().cpu() | |
# Collect Attn branch stats | |
stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = int((text_lengths + self.predictor_bias).sum()) | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def _calc_att_clas_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
hotword_pad: torch.Tensor, | |
hotword_lengths: torch.Tensor, | |
): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
if self.predictor_bias == 1: | |
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_pad_lens = ys_pad_lens + self.predictor_bias | |
pre_acoustic_embeds, pre_token_length, _, _ = self.predictor( | |
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
# -1. bias encoder | |
if self.use_decoder_embedding: | |
hw_embed = self.decoder.embed(hotword_pad) | |
else: | |
hw_embed = self.bias_embed(hotword_pad) | |
hw_embed, (_, _) = self.bias_encoder(hw_embed) | |
_ind = np.arange(0, hotword_pad.shape[0]).tolist() | |
selected = hw_embed[ | |
_ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()] | |
] | |
contextual_info = ( | |
selected.squeeze(0).repeat(ys_pad.shape[0], 1, 1).to(ys_pad.device) | |
) | |
# 0. sampler | |
decoder_out_1st = None | |
if self.sampling_ratio > 0.0: | |
if self.step_cur < 2: | |
logging.info( | |
"enable sampler in paraformer, sampling_ratio: {}".format( | |
self.sampling_ratio | |
) | |
) | |
sematic_embeds, decoder_out_1st = self.sampler( | |
encoder_out, | |
encoder_out_lens, | |
ys_pad, | |
ys_pad_lens, | |
pre_acoustic_embeds, | |
contextual_info, | |
) | |
else: | |
if self.step_cur < 2: | |
logging.info( | |
"disable sampler in paraformer, sampling_ratio: {}".format( | |
self.sampling_ratio | |
) | |
) | |
sematic_embeds = pre_acoustic_embeds | |
# 1. Forward decoder | |
decoder_outs = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
sematic_embeds, | |
ys_pad_lens, | |
contextual_info=contextual_info, | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
""" | |
if self.crit_attn_weight > 0 and attn.shape[-1] > 1: | |
ideal_attn = ideal_attn + self.crit_attn_smooth / (self.crit_attn_smooth + 1.0) | |
attn_non_blank = attn[:,:,:,:-1] | |
ideal_attn_non_blank = ideal_attn[:,:,:-1] | |
loss_ideal = self.attn_loss(attn_non_blank.max(1)[0], ideal_attn_non_blank.to(attn.device)) | |
else: | |
loss_ideal = None | |
""" | |
loss_ideal = None | |
if decoder_out_1st is None: | |
decoder_out_1st = decoder_out | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_pad) | |
acc_att = th_accuracy( | |
decoder_out_1st.view(-1, self.vocab_size), | |
ys_pad, | |
ignore_label=self.ignore_id, | |
) | |
loss_pre = self.criterion_pre( | |
ys_pad_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out_1st.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre, loss_ideal | |
def sampler( | |
self, | |
encoder_out, | |
encoder_out_lens, | |
ys_pad, | |
ys_pad_lens, | |
pre_acoustic_embeds, | |
contextual_info, | |
): | |
tgt_mask = ( | |
~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None] | |
).to(ys_pad.device) | |
ys_pad = ys_pad * tgt_mask[:, :, 0] | |
if self.share_embedding: | |
ys_pad_embed = self.decoder.output_layer.weight[ys_pad] | |
else: | |
ys_pad_embed = self.decoder.embed(ys_pad) | |
with torch.no_grad(): | |
decoder_outs = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
pre_acoustic_embeds, | |
ys_pad_lens, | |
contextual_info=contextual_info, | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
pred_tokens = decoder_out.argmax(-1) | |
nonpad_positions = ys_pad.ne(self.ignore_id) | |
seq_lens = (nonpad_positions).sum(1) | |
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) | |
input_mask = torch.ones_like(nonpad_positions) | |
bsz, seq_len = ys_pad.size() | |
for li in range(bsz): | |
target_num = ( | |
((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio | |
).long() | |
if target_num > 0: | |
input_mask[li].scatter_( | |
dim=0, | |
index=torch.randperm(seq_lens[li])[:target_num].to( | |
pre_acoustic_embeds.device | |
), | |
value=0, | |
) | |
input_mask = input_mask.eq(1) | |
input_mask = input_mask.masked_fill(~nonpad_positions, False) | |
input_mask_expand_dim = input_mask.unsqueeze(2).to( | |
pre_acoustic_embeds.device | |
) | |
sematic_embeds = pre_acoustic_embeds.masked_fill( | |
~input_mask_expand_dim, 0 | |
) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0) | |
return sematic_embeds * tgt_mask, decoder_out * tgt_mask | |
def cal_decoder_with_predictor( | |
self, | |
encoder_out, | |
encoder_out_lens, | |
sematic_embeds, | |
ys_pad_lens, | |
hw_list=None, | |
clas_scale=1.0, | |
): | |
if hw_list is None: | |
hw_list = [ | |
torch.Tensor([1]).long().to(encoder_out.device) | |
] # empty hotword list | |
hw_list_pad = pad_list(hw_list, 0) | |
if self.use_decoder_embedding: | |
hw_embed = self.decoder.embed(hw_list_pad) | |
else: | |
hw_embed = self.bias_embed(hw_list_pad) | |
hw_embed, (h_n, _) = self.bias_encoder(hw_embed) | |
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1) | |
else: | |
hw_lengths = [len(i) for i in hw_list] | |
hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to( | |
encoder_out.device | |
) | |
if self.use_decoder_embedding: | |
hw_embed = self.decoder.embed(hw_list_pad) | |
else: | |
hw_embed = self.bias_embed(hw_list_pad) | |
hw_embed = torch.nn.utils.rnn.pack_padded_sequence( | |
hw_embed, hw_lengths, batch_first=True, enforce_sorted=False | |
) | |
_, (h_n, _) = self.bias_encoder(hw_embed) | |
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1) | |
decoder_outs = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
sematic_embeds, | |
ys_pad_lens, | |
contextual_info=hw_embed, | |
clas_scale=clas_scale, | |
) | |
decoder_out = decoder_outs[0] | |
decoder_out = torch.log_softmax(decoder_out, dim=-1) | |
return decoder_out, ys_pad_lens | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
if self.beam_search is None and (is_use_lm or is_use_ctc): | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
meta_data = {} | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000) | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# hotword | |
self.hotword_list = self.generate_hotwords_list( | |
kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend | |
) | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# predictor | |
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( | |
predictor_outs[0], | |
predictor_outs[1], | |
predictor_outs[2], | |
predictor_outs[3], | |
) | |
pre_token_length = pre_token_length.round().long() | |
if torch.max(pre_token_length) < 1: | |
return [] | |
decoder_outs = self.cal_decoder_with_predictor( | |
encoder_out, | |
encoder_out_lens, | |
pre_acoustic_embeds, | |
pre_token_length, | |
hw_list=self.hotword_list, | |
clas_scale=kwargs.get("clas_scale", 1.0), | |
) | |
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] | |
results = [] | |
b, n, d = decoder_out.size() | |
for i in range(b): | |
x = encoder_out[i, : encoder_out_lens[i], :] | |
am_scores = decoder_out[i, : pre_token_length[i], :] | |
if self.beam_search is not None: | |
nbest_hyps = self.beam_search( | |
x=x, | |
am_scores=am_scores, | |
maxlenratio=kwargs.get("maxlenratio", 0.0), | |
minlenratio=kwargs.get("minlenratio", 0.0), | |
) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
else: | |
yseq = am_scores.argmax(dim=-1) | |
score = am_scores.max(dim=-1)[0] | |
score = torch.sum(score, dim=-1) | |
# pad with mask tokens to ensure compatibility with sos/eos tokens | |
yseq = torch.tensor( | |
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device | |
) | |
nbest_hyps = [Hypothesis(yseq=yseq, score=score)] | |
for nbest_idx, hyp in enumerate(nbest_hyps): | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
if tokenizer is not None: | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
text = tokenizer.tokens2text(token) | |
text_postprocessed, _ = postprocess_utils.sentence_postprocess( | |
token | |
) | |
result_i = {"key": key[i], "text": text_postprocessed} | |
if ibest_writer is not None: | |
ibest_writer["token"][key[i]] = " ".join(token) | |
ibest_writer["text"][key[i]] = text | |
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed | |
else: | |
result_i = {"key": key[i], "token_int": token_int} | |
results.append(result_i) | |
return results, meta_data | |
def generate_hotwords_list( | |
self, hotword_list_or_file, tokenizer=None, frontend=None | |
): | |
def load_seg_dict(seg_dict_file): | |
seg_dict = {} | |
assert isinstance(seg_dict_file, str) | |
with open(seg_dict_file, "r", encoding="utf8") as f: | |
lines = f.readlines() | |
for line in lines: | |
s = line.strip().split() | |
key = s[0] | |
value = s[1:] | |
seg_dict[key] = " ".join(value) | |
return seg_dict | |
def seg_tokenize(txt, seg_dict): | |
pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$") | |
out_txt = "" | |
for word in txt: | |
word = word.lower() | |
if word in seg_dict: | |
out_txt += seg_dict[word] + " " | |
else: | |
if pattern.match(word): | |
for char in word: | |
if char in seg_dict: | |
out_txt += seg_dict[char] + " " | |
else: | |
out_txt += "<unk>" + " " | |
else: | |
out_txt += "<unk>" + " " | |
return out_txt.strip().split() | |
seg_dict = None | |
if frontend.cmvn_file is not None: | |
model_dir = os.path.dirname(frontend.cmvn_file) | |
seg_dict_file = os.path.join(model_dir, "seg_dict") | |
if os.path.exists(seg_dict_file): | |
seg_dict = load_seg_dict(seg_dict_file) | |
else: | |
seg_dict = None | |
# for None | |
if hotword_list_or_file is None: | |
hotword_list = None | |
# for local txt inputs | |
elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith( | |
".txt" | |
): | |
logging.info("Attempting to parse hotwords from local txt...") | |
hotword_list = [] | |
hotword_str_list = [] | |
with codecs.open(hotword_list_or_file, "r") as fin: | |
for line in fin.readlines(): | |
hw = line.strip() | |
hw_list = hw.split() | |
if seg_dict is not None: | |
hw_list = seg_tokenize(hw_list, seg_dict) | |
hotword_str_list.append(hw) | |
hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
hotword_list.append([self.sos]) | |
hotword_str_list.append("<s>") | |
logging.info( | |
"Initialized hotword list from file: {}, hotword list: {}.".format( | |
hotword_list_or_file, hotword_str_list | |
) | |
) | |
# for url, download and generate txt | |
elif hotword_list_or_file.startswith("http"): | |
logging.info("Attempting to parse hotwords from url...") | |
work_dir = tempfile.TemporaryDirectory().name | |
if not os.path.exists(work_dir): | |
os.makedirs(work_dir) | |
text_file_path = os.path.join( | |
work_dir, os.path.basename(hotword_list_or_file) | |
) | |
local_file = requests.get(hotword_list_or_file) | |
open(text_file_path, "wb").write(local_file.content) | |
hotword_list_or_file = text_file_path | |
hotword_list = [] | |
hotword_str_list = [] | |
with codecs.open(hotword_list_or_file, "r") as fin: | |
for line in fin.readlines(): | |
hw = line.strip() | |
hw_list = hw.split() | |
if seg_dict is not None: | |
hw_list = seg_tokenize(hw_list, seg_dict) | |
hotword_str_list.append(hw) | |
hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
hotword_list.append([self.sos]) | |
hotword_str_list.append("<s>") | |
logging.info( | |
"Initialized hotword list from file: {}, hotword list: {}.".format( | |
hotword_list_or_file, hotword_str_list | |
) | |
) | |
# for text str input | |
elif not hotword_list_or_file.endswith(".txt"): | |
logging.info("Attempting to parse hotwords as str...") | |
hotword_list = [] | |
hotword_str_list = [] | |
for hw in hotword_list_or_file.strip().split(): | |
hotword_str_list.append(hw) | |
hw_list = hw.strip().split() | |
if seg_dict is not None: | |
hw_list = seg_tokenize(hw_list, seg_dict) | |
hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
hotword_list.append([self.sos]) | |
hotword_str_list.append("<s>") | |
logging.info("Hotword list: {}.".format(hotword_str_list)) | |
else: | |
hotword_list = None | |
return hotword_list | |