Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker) | |
import io | |
import os | |
import torch | |
import requests | |
import tempfile | |
import contextlib | |
import numpy as np | |
import librosa as sf | |
from typing import Union | |
from pathlib import Path | |
from typing import Generator, Union | |
from abc import ABCMeta, abstractmethod | |
import torchaudio.compliance.kaldi as Kaldi | |
from funasr_detach.models.transformer.utils.nets_utils import pad_list | |
def check_audio_list(audio: list): | |
audio_dur = 0 | |
for i in range(len(audio)): | |
seg = audio[i] | |
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps." | |
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type." | |
assert ( | |
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0] | |
), "modelscope error: audio data in list is inconsistent with time length." | |
if i > 0: | |
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps." | |
audio_dur += seg[1] - seg[0] | |
return audio_dur | |
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.' | |
def sv_preprocess(inputs: Union[np.ndarray, list]): | |
output = [] | |
for i in range(len(inputs)): | |
if isinstance(inputs[i], str): | |
file_bytes = File.read(inputs[i]) | |
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32") | |
if len(data.shape) == 2: | |
data = data[:, 0] | |
data = torch.from_numpy(data).unsqueeze(0) | |
data = data.squeeze(0) | |
elif isinstance(inputs[i], np.ndarray): | |
assert ( | |
len(inputs[i].shape) == 1 | |
), "modelscope error: Input array should be [N, T]" | |
data = inputs[i] | |
if data.dtype in ["int16", "int32", "int64"]: | |
data = (data / (1 << 15)).astype("float32") | |
else: | |
data = data.astype("float32") | |
data = torch.from_numpy(data) | |
else: | |
raise ValueError( | |
"modelscope error: The input type is restricted to audio address and nump array." | |
) | |
output.append(data) | |
return output | |
def sv_chunk(vad_segments: list, fs=16000) -> list: | |
config = { | |
"seg_dur": 1.5, | |
"seg_shift": 0.75, | |
} | |
def seg_chunk(seg_data): | |
seg_st = seg_data[0] | |
data = seg_data[2] | |
chunk_len = int(config["seg_dur"] * fs) | |
chunk_shift = int(config["seg_shift"] * fs) | |
last_chunk_ed = 0 | |
seg_res = [] | |
for chunk_st in range(0, data.shape[0], chunk_shift): | |
chunk_ed = min(chunk_st + chunk_len, data.shape[0]) | |
if chunk_ed <= last_chunk_ed: | |
break | |
last_chunk_ed = chunk_ed | |
chunk_st = max(0, chunk_ed - chunk_len) | |
chunk_data = data[chunk_st:chunk_ed] | |
if chunk_data.shape[0] < chunk_len: | |
chunk_data = np.pad( | |
chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant" | |
) | |
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data]) | |
return seg_res | |
segs = [] | |
for i, s in enumerate(vad_segments): | |
segs.extend(seg_chunk(s)) | |
return segs | |
def extract_feature(audio): | |
features = [] | |
feature_times = [] | |
feature_lengths = [] | |
for au in audio: | |
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80) | |
feature = feature - feature.mean(dim=0, keepdim=True) | |
features.append(feature) | |
feature_times.append(au.shape[0]) | |
feature_lengths.append(feature.shape[0]) | |
# padding for batch inference | |
features_padded = pad_list(features, pad_value=0) | |
# features = torch.cat(features) | |
return features_padded, feature_lengths, feature_times | |
def postprocess( | |
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray | |
) -> list: | |
assert len(segments) == len(labels) | |
labels = correct_labels(labels) | |
distribute_res = [] | |
for i in range(len(segments)): | |
distribute_res.append([segments[i][0], segments[i][1], labels[i]]) | |
# merge the same speakers chronologically | |
distribute_res = merge_seque(distribute_res) | |
# accquire speaker center | |
spk_embs = [] | |
for i in range(labels.max() + 1): | |
spk_emb = embeddings[labels == i].mean(0) | |
spk_embs.append(spk_emb) | |
spk_embs = np.stack(spk_embs) | |
def is_overlapped(t1, t2): | |
if t1 > t2 + 1e-4: | |
return True | |
return False | |
# distribute the overlap region | |
for i in range(1, len(distribute_res)): | |
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]): | |
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2 | |
distribute_res[i][0] = p | |
distribute_res[i - 1][1] = p | |
# smooth the result | |
distribute_res = smooth(distribute_res) | |
return distribute_res | |
def correct_labels(labels): | |
labels_id = 0 | |
id2id = {} | |
new_labels = [] | |
for i in labels: | |
if i not in id2id: | |
id2id[i] = labels_id | |
labels_id += 1 | |
new_labels.append(id2id[i]) | |
return np.array(new_labels) | |
def merge_seque(distribute_res): | |
res = [distribute_res[0]] | |
for i in range(1, len(distribute_res)): | |
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]: | |
res.append(distribute_res[i]) | |
else: | |
res[-1][1] = distribute_res[i][1] | |
return res | |
def smooth(res, mindur=1): | |
# short segments are assigned to nearest speakers. | |
for i in range(len(res)): | |
res[i][0] = round(res[i][0], 2) | |
res[i][1] = round(res[i][1], 2) | |
if res[i][1] - res[i][0] < mindur: | |
if i == 0: | |
res[i][2] = res[i + 1][2] | |
elif i == len(res) - 1: | |
res[i][2] = res[i - 1][2] | |
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]: | |
res[i][2] = res[i - 1][2] | |
else: | |
res[i][2] = res[i + 1][2] | |
# merge the speakers | |
res = merge_seque(res) | |
return res | |
def distribute_spk(sentence_list, sd_time_list): | |
sd_sentence_list = [] | |
for d in sentence_list: | |
sentence_start = d["start"] | |
sentence_end = d["end"] | |
sentence_spk = 0 | |
max_overlap = 0 | |
for sd_time in sd_time_list: | |
spk_st, spk_ed, spk = sd_time | |
spk_st = spk_st * 1000 | |
spk_ed = spk_ed * 1000 | |
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0) | |
if overlap > max_overlap: | |
max_overlap = overlap | |
sentence_spk = spk | |
d["spk"] = int(sentence_spk) | |
sd_sentence_list.append(d) | |
return sd_sentence_list | |
class Storage(metaclass=ABCMeta): | |
"""Abstract class of storage. | |
All backends need to implement two apis: ``read()`` and ``read_text()``. | |
``read()`` reads the file as a byte stream and ``read_text()`` reads | |
the file as texts. | |
""" | |
def read(self, filepath: str): | |
pass | |
def read_text(self, filepath: str): | |
pass | |
def write(self, obj: bytes, filepath: Union[str, Path]) -> None: | |
pass | |
def write_text( | |
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8" | |
) -> None: | |
pass | |
class LocalStorage(Storage): | |
"""Local hard disk storage""" | |
def read(self, filepath: Union[str, Path]) -> bytes: | |
"""Read data from a given ``filepath`` with 'rb' mode. | |
Args: | |
filepath (str or Path): Path to read data. | |
Returns: | |
bytes: Expected bytes object. | |
""" | |
with open(filepath, "rb") as f: | |
content = f.read() | |
return content | |
def read_text(self, filepath: Union[str, Path], encoding: str = "utf-8") -> str: | |
"""Read data from a given ``filepath`` with 'r' mode. | |
Args: | |
filepath (str or Path): Path to read data. | |
encoding (str): The encoding format used to open the ``filepath``. | |
Default: 'utf-8'. | |
Returns: | |
str: Expected text reading from ``filepath``. | |
""" | |
with open(filepath, "r", encoding=encoding) as f: | |
value_buf = f.read() | |
return value_buf | |
def write(self, obj: bytes, filepath: Union[str, Path]) -> None: | |
"""Write data to a given ``filepath`` with 'wb' mode. | |
Note: | |
``write`` will create a directory if the directory of ``filepath`` | |
does not exist. | |
Args: | |
obj (bytes): Data to be written. | |
filepath (str or Path): Path to write data. | |
""" | |
dirname = os.path.dirname(filepath) | |
if dirname and not os.path.exists(dirname): | |
os.makedirs(dirname, exist_ok=True) | |
with open(filepath, "wb") as f: | |
f.write(obj) | |
def write_text( | |
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8" | |
) -> None: | |
"""Write data to a given ``filepath`` with 'w' mode. | |
Note: | |
``write_text`` will create a directory if the directory of | |
``filepath`` does not exist. | |
Args: | |
obj (str): Data to be written. | |
filepath (str or Path): Path to write data. | |
encoding (str): The encoding format used to open the ``filepath``. | |
Default: 'utf-8'. | |
""" | |
dirname = os.path.dirname(filepath) | |
if dirname and not os.path.exists(dirname): | |
os.makedirs(dirname, exist_ok=True) | |
with open(filepath, "w", encoding=encoding) as f: | |
f.write(obj) | |
def as_local_path( | |
self, filepath: Union[str, Path] | |
) -> Generator[Union[str, Path], None, None]: | |
"""Only for unified API and do nothing.""" | |
yield filepath | |
class HTTPStorage(Storage): | |
"""HTTP and HTTPS storage.""" | |
def read(self, url): | |
# TODO @wenmeng.zwm add progress bar if file is too large | |
r = requests.get(url) | |
r.raise_for_status() | |
return r.content | |
def read_text(self, url): | |
r = requests.get(url) | |
r.raise_for_status() | |
return r.text | |
def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]: | |
"""Download a file from ``filepath``. | |
``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It | |
can be called with ``with`` statement, and when exists from the | |
``with`` statement, the temporary path will be released. | |
Args: | |
filepath (str): Download a file from ``filepath``. | |
Examples: | |
>>> storage = HTTPStorage() | |
>>> # After existing from the ``with`` clause, | |
>>> # the path will be removed | |
>>> with storage.get_local_path('http://path/to/file') as path: | |
... # do something here | |
""" | |
try: | |
f = tempfile.NamedTemporaryFile(delete=False) | |
f.write(self.read(filepath)) | |
f.close() | |
yield f.name | |
finally: | |
os.remove(f.name) | |
def write(self, obj: bytes, url: Union[str, Path]) -> None: | |
raise NotImplementedError("write is not supported by HTTP Storage") | |
def write_text( | |
self, obj: str, url: Union[str, Path], encoding: str = "utf-8" | |
) -> None: | |
raise NotImplementedError("write_text is not supported by HTTP Storage") | |
class OSSStorage(Storage): | |
"""OSS storage.""" | |
def __init__(self, oss_config_file=None): | |
# read from config file or env var | |
raise NotImplementedError("OSSStorage.__init__ to be implemented in the future") | |
def read(self, filepath): | |
raise NotImplementedError("OSSStorage.read to be implemented in the future") | |
def read_text(self, filepath, encoding="utf-8"): | |
raise NotImplementedError( | |
"OSSStorage.read_text to be implemented in the future" | |
) | |
def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]: | |
"""Download a file from ``filepath``. | |
``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It | |
can be called with ``with`` statement, and when exists from the | |
``with`` statement, the temporary path will be released. | |
Args: | |
filepath (str): Download a file from ``filepath``. | |
Examples: | |
>>> storage = OSSStorage() | |
>>> # After existing from the ``with`` clause, | |
>>> # the path will be removed | |
>>> with storage.get_local_path('http://path/to/file') as path: | |
... # do something here | |
""" | |
try: | |
f = tempfile.NamedTemporaryFile(delete=False) | |
f.write(self.read(filepath)) | |
f.close() | |
yield f.name | |
finally: | |
os.remove(f.name) | |
def write(self, obj: bytes, filepath: Union[str, Path]) -> None: | |
raise NotImplementedError("OSSStorage.write to be implemented in the future") | |
def write_text( | |
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8" | |
) -> None: | |
raise NotImplementedError( | |
"OSSStorage.write_text to be implemented in the future" | |
) | |
G_STORAGES = {} | |
class File(object): | |
_prefix_to_storage: dict = { | |
"oss": OSSStorage, | |
"http": HTTPStorage, | |
"https": HTTPStorage, | |
"local": LocalStorage, | |
} | |
def _get_storage(uri): | |
assert isinstance(uri, str), f"uri should be str type, but got {type(uri)}" | |
if "://" not in uri: | |
# local path | |
storage_type = "local" | |
else: | |
prefix, _ = uri.split("://") | |
storage_type = prefix | |
assert storage_type in File._prefix_to_storage, ( | |
f"Unsupported uri {uri}, valid prefixs: " | |
f"{list(File._prefix_to_storage.keys())}" | |
) | |
if storage_type not in G_STORAGES: | |
G_STORAGES[storage_type] = File._prefix_to_storage[storage_type]() | |
return G_STORAGES[storage_type] | |
def read(uri: str) -> bytes: | |
"""Read data from a given ``filepath`` with 'rb' mode. | |
Args: | |
filepath (str or Path): Path to read data. | |
Returns: | |
bytes: Expected bytes object. | |
""" | |
storage = File._get_storage(uri) | |
return storage.read(uri) | |
def read_text(uri: Union[str, Path], encoding: str = "utf-8") -> str: | |
"""Read data from a given ``filepath`` with 'r' mode. | |
Args: | |
filepath (str or Path): Path to read data. | |
encoding (str): The encoding format used to open the ``filepath``. | |
Default: 'utf-8'. | |
Returns: | |
str: Expected text reading from ``filepath``. | |
""" | |
storage = File._get_storage(uri) | |
return storage.read_text(uri) | |
def write(obj: bytes, uri: Union[str, Path]) -> None: | |
"""Write data to a given ``filepath`` with 'wb' mode. | |
Note: | |
``write`` will create a directory if the directory of ``filepath`` | |
does not exist. | |
Args: | |
obj (bytes): Data to be written. | |
filepath (str or Path): Path to write data. | |
""" | |
storage = File._get_storage(uri) | |
return storage.write(obj, uri) | |
def write_text(obj: str, uri: str, encoding: str = "utf-8") -> None: | |
"""Write data to a given ``filepath`` with 'w' mode. | |
Note: | |
``write_text`` will create a directory if the directory of | |
``filepath`` does not exist. | |
Args: | |
obj (str): Data to be written. | |
filepath (str or Path): Path to write data. | |
encoding (str): The encoding format used to open the ``filepath``. | |
Default: 'utf-8'. | |
""" | |
storage = File._get_storage(uri) | |
return storage.write_text(obj, uri) | |
def as_local_path(uri: str) -> Generator[Union[str, Path], None, None]: | |
"""Only for unified API and do nothing.""" | |
storage = File._get_storage(uri) | |
with storage.as_local_path(uri) as local_path: | |
yield local_path | |