mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
16.7 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)
import io
import os
import torch
import requests
import tempfile
import contextlib
import numpy as np
import librosa as sf
from typing import Union
from pathlib import Path
from typing import Generator, Union
from abc import ABCMeta, abstractmethod
import torchaudio.compliance.kaldi as Kaldi
from funasr_detach.models.transformer.utils.nets_utils import pad_list
def check_audio_list(audio: list):
audio_dur = 0
for i in range(len(audio)):
seg = audio[i]
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps."
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type."
assert (
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0]
), "modelscope error: audio data in list is inconsistent with time length."
if i > 0:
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps."
audio_dur += seg[1] - seg[0]
return audio_dur
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'
def sv_preprocess(inputs: Union[np.ndarray, list]):
output = []
for i in range(len(inputs)):
if isinstance(inputs[i], str):
file_bytes = File.read(inputs[i])
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32")
if len(data.shape) == 2:
data = data[:, 0]
data = torch.from_numpy(data).unsqueeze(0)
data = data.squeeze(0)
elif isinstance(inputs[i], np.ndarray):
assert (
len(inputs[i].shape) == 1
), "modelscope error: Input array should be [N, T]"
data = inputs[i]
if data.dtype in ["int16", "int32", "int64"]:
data = (data / (1 << 15)).astype("float32")
else:
data = data.astype("float32")
data = torch.from_numpy(data)
else:
raise ValueError(
"modelscope error: The input type is restricted to audio address and nump array."
)
output.append(data)
return output
def sv_chunk(vad_segments: list, fs=16000) -> list:
config = {
"seg_dur": 1.5,
"seg_shift": 0.75,
}
def seg_chunk(seg_data):
seg_st = seg_data[0]
data = seg_data[2]
chunk_len = int(config["seg_dur"] * fs)
chunk_shift = int(config["seg_shift"] * fs)
last_chunk_ed = 0
seg_res = []
for chunk_st in range(0, data.shape[0], chunk_shift):
chunk_ed = min(chunk_st + chunk_len, data.shape[0])
if chunk_ed <= last_chunk_ed:
break
last_chunk_ed = chunk_ed
chunk_st = max(0, chunk_ed - chunk_len)
chunk_data = data[chunk_st:chunk_ed]
if chunk_data.shape[0] < chunk_len:
chunk_data = np.pad(
chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant"
)
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data])
return seg_res
segs = []
for i, s in enumerate(vad_segments):
segs.extend(seg_chunk(s))
return segs
def extract_feature(audio):
features = []
feature_times = []
feature_lengths = []
for au in audio:
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
feature = feature - feature.mean(dim=0, keepdim=True)
features.append(feature)
feature_times.append(au.shape[0])
feature_lengths.append(feature.shape[0])
# padding for batch inference
features_padded = pad_list(features, pad_value=0)
# features = torch.cat(features)
return features_padded, feature_lengths, feature_times
def postprocess(
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray
) -> list:
assert len(segments) == len(labels)
labels = correct_labels(labels)
distribute_res = []
for i in range(len(segments)):
distribute_res.append([segments[i][0], segments[i][1], labels[i]])
# merge the same speakers chronologically
distribute_res = merge_seque(distribute_res)
# accquire speaker center
spk_embs = []
for i in range(labels.max() + 1):
spk_emb = embeddings[labels == i].mean(0)
spk_embs.append(spk_emb)
spk_embs = np.stack(spk_embs)
def is_overlapped(t1, t2):
if t1 > t2 + 1e-4:
return True
return False
# distribute the overlap region
for i in range(1, len(distribute_res)):
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
distribute_res[i][0] = p
distribute_res[i - 1][1] = p
# smooth the result
distribute_res = smooth(distribute_res)
return distribute_res
def correct_labels(labels):
labels_id = 0
id2id = {}
new_labels = []
for i in labels:
if i not in id2id:
id2id[i] = labels_id
labels_id += 1
new_labels.append(id2id[i])
return np.array(new_labels)
def merge_seque(distribute_res):
res = [distribute_res[0]]
for i in range(1, len(distribute_res)):
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]:
res.append(distribute_res[i])
else:
res[-1][1] = distribute_res[i][1]
return res
def smooth(res, mindur=1):
# short segments are assigned to nearest speakers.
for i in range(len(res)):
res[i][0] = round(res[i][0], 2)
res[i][1] = round(res[i][1], 2)
if res[i][1] - res[i][0] < mindur:
if i == 0:
res[i][2] = res[i + 1][2]
elif i == len(res) - 1:
res[i][2] = res[i - 1][2]
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
res[i][2] = res[i - 1][2]
else:
res[i][2] = res[i + 1][2]
# merge the speakers
res = merge_seque(res)
return res
def distribute_spk(sentence_list, sd_time_list):
sd_sentence_list = []
for d in sentence_list:
sentence_start = d["start"]
sentence_end = d["end"]
sentence_spk = 0
max_overlap = 0
for sd_time in sd_time_list:
spk_st, spk_ed, spk = sd_time
spk_st = spk_st * 1000
spk_ed = spk_ed * 1000
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
if overlap > max_overlap:
max_overlap = overlap
sentence_spk = spk
d["spk"] = int(sentence_spk)
sd_sentence_list.append(d)
return sd_sentence_list
class Storage(metaclass=ABCMeta):
"""Abstract class of storage.
All backends need to implement two apis: ``read()`` and ``read_text()``.
``read()`` reads the file as a byte stream and ``read_text()`` reads
the file as texts.
"""
@abstractmethod
def read(self, filepath: str):
pass
@abstractmethod
def read_text(self, filepath: str):
pass
@abstractmethod
def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
pass
@abstractmethod
def write_text(
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
) -> None:
pass
class LocalStorage(Storage):
"""Local hard disk storage"""
def read(self, filepath: Union[str, Path]) -> bytes:
"""Read data from a given ``filepath`` with 'rb' mode.
Args:
filepath (str or Path): Path to read data.
Returns:
bytes: Expected bytes object.
"""
with open(filepath, "rb") as f:
content = f.read()
return content
def read_text(self, filepath: Union[str, Path], encoding: str = "utf-8") -> str:
"""Read data from a given ``filepath`` with 'r' mode.
Args:
filepath (str or Path): Path to read data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
Returns:
str: Expected text reading from ``filepath``.
"""
with open(filepath, "r", encoding=encoding) as f:
value_buf = f.read()
return value_buf
def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
"""Write data to a given ``filepath`` with 'wb' mode.
Note:
``write`` will create a directory if the directory of ``filepath``
does not exist.
Args:
obj (bytes): Data to be written.
filepath (str or Path): Path to write data.
"""
dirname = os.path.dirname(filepath)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname, exist_ok=True)
with open(filepath, "wb") as f:
f.write(obj)
def write_text(
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
) -> None:
"""Write data to a given ``filepath`` with 'w' mode.
Note:
``write_text`` will create a directory if the directory of
``filepath`` does not exist.
Args:
obj (str): Data to be written.
filepath (str or Path): Path to write data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
"""
dirname = os.path.dirname(filepath)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname, exist_ok=True)
with open(filepath, "w", encoding=encoding) as f:
f.write(obj)
@contextlib.contextmanager
def as_local_path(
self, filepath: Union[str, Path]
) -> Generator[Union[str, Path], None, None]:
"""Only for unified API and do nothing."""
yield filepath
class HTTPStorage(Storage):
"""HTTP and HTTPS storage."""
def read(self, url):
# TODO @wenmeng.zwm add progress bar if file is too large
r = requests.get(url)
r.raise_for_status()
return r.content
def read_text(self, url):
r = requests.get(url)
r.raise_for_status()
return r.text
@contextlib.contextmanager
def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]:
"""Download a file from ``filepath``.
``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It
can be called with ``with`` statement, and when exists from the
``with`` statement, the temporary path will be released.
Args:
filepath (str): Download a file from ``filepath``.
Examples:
>>> storage = HTTPStorage()
>>> # After existing from the ``with`` clause,
>>> # the path will be removed
>>> with storage.get_local_path('http://path/to/file') as path:
... # do something here
"""
try:
f = tempfile.NamedTemporaryFile(delete=False)
f.write(self.read(filepath))
f.close()
yield f.name
finally:
os.remove(f.name)
def write(self, obj: bytes, url: Union[str, Path]) -> None:
raise NotImplementedError("write is not supported by HTTP Storage")
def write_text(
self, obj: str, url: Union[str, Path], encoding: str = "utf-8"
) -> None:
raise NotImplementedError("write_text is not supported by HTTP Storage")
class OSSStorage(Storage):
"""OSS storage."""
def __init__(self, oss_config_file=None):
# read from config file or env var
raise NotImplementedError("OSSStorage.__init__ to be implemented in the future")
def read(self, filepath):
raise NotImplementedError("OSSStorage.read to be implemented in the future")
def read_text(self, filepath, encoding="utf-8"):
raise NotImplementedError(
"OSSStorage.read_text to be implemented in the future"
)
@contextlib.contextmanager
def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]:
"""Download a file from ``filepath``.
``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It
can be called with ``with`` statement, and when exists from the
``with`` statement, the temporary path will be released.
Args:
filepath (str): Download a file from ``filepath``.
Examples:
>>> storage = OSSStorage()
>>> # After existing from the ``with`` clause,
>>> # the path will be removed
>>> with storage.get_local_path('http://path/to/file') as path:
... # do something here
"""
try:
f = tempfile.NamedTemporaryFile(delete=False)
f.write(self.read(filepath))
f.close()
yield f.name
finally:
os.remove(f.name)
def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
raise NotImplementedError("OSSStorage.write to be implemented in the future")
def write_text(
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
) -> None:
raise NotImplementedError(
"OSSStorage.write_text to be implemented in the future"
)
G_STORAGES = {}
class File(object):
_prefix_to_storage: dict = {
"oss": OSSStorage,
"http": HTTPStorage,
"https": HTTPStorage,
"local": LocalStorage,
}
@staticmethod
def _get_storage(uri):
assert isinstance(uri, str), f"uri should be str type, but got {type(uri)}"
if "://" not in uri:
# local path
storage_type = "local"
else:
prefix, _ = uri.split("://")
storage_type = prefix
assert storage_type in File._prefix_to_storage, (
f"Unsupported uri {uri}, valid prefixs: "
f"{list(File._prefix_to_storage.keys())}"
)
if storage_type not in G_STORAGES:
G_STORAGES[storage_type] = File._prefix_to_storage[storage_type]()
return G_STORAGES[storage_type]
@staticmethod
def read(uri: str) -> bytes:
"""Read data from a given ``filepath`` with 'rb' mode.
Args:
filepath (str or Path): Path to read data.
Returns:
bytes: Expected bytes object.
"""
storage = File._get_storage(uri)
return storage.read(uri)
@staticmethod
def read_text(uri: Union[str, Path], encoding: str = "utf-8") -> str:
"""Read data from a given ``filepath`` with 'r' mode.
Args:
filepath (str or Path): Path to read data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
Returns:
str: Expected text reading from ``filepath``.
"""
storage = File._get_storage(uri)
return storage.read_text(uri)
@staticmethod
def write(obj: bytes, uri: Union[str, Path]) -> None:
"""Write data to a given ``filepath`` with 'wb' mode.
Note:
``write`` will create a directory if the directory of ``filepath``
does not exist.
Args:
obj (bytes): Data to be written.
filepath (str or Path): Path to write data.
"""
storage = File._get_storage(uri)
return storage.write(obj, uri)
@staticmethod
def write_text(obj: str, uri: str, encoding: str = "utf-8") -> None:
"""Write data to a given ``filepath`` with 'w' mode.
Note:
``write_text`` will create a directory if the directory of
``filepath`` does not exist.
Args:
obj (str): Data to be written.
filepath (str or Path): Path to write data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
"""
storage = File._get_storage(uri)
return storage.write_text(obj, uri)
@contextlib.contextmanager
def as_local_path(uri: str) -> Generator[Union[str, Path], None, None]:
"""Only for unified API and do nothing."""
storage = File._get_storage(uri)
with storage.as_local_path(uri) as local_path:
yield local_path