Spaces:
Runtime error
Runtime error
# This is an example that demonstrates how to configure a model file. | |
# You can modify the configuration according to your own requirements. | |
# to print the register_table: | |
# from funasr.register import tables | |
# tables.print() | |
# network architecture | |
#model: funasr.models.paraformer.model:Paraformer | |
model: BiCifParaformer | |
model_conf: | |
ctc_weight: 0.0 | |
lsm_weight: 0.1 | |
length_normalized_loss: true | |
predictor_weight: 1.0 | |
predictor_bias: 1 | |
sampling_ratio: 0.75 | |
# encoder | |
encoder: SANMEncoder | |
encoder_conf: | |
output_size: 512 | |
attention_heads: 4 | |
linear_units: 2048 | |
num_blocks: 50 | |
dropout_rate: 0.1 | |
positional_dropout_rate: 0.1 | |
attention_dropout_rate: 0.1 | |
input_layer: pe | |
pos_enc_class: SinusoidalPositionEncoder | |
normalize_before: true | |
kernel_size: 11 | |
sanm_shfit: 0 | |
selfattention_layer_type: sanm | |
# decoder | |
decoder: ParaformerSANMDecoder | |
decoder_conf: | |
attention_heads: 4 | |
linear_units: 2048 | |
num_blocks: 16 | |
dropout_rate: 0.1 | |
positional_dropout_rate: 0.1 | |
self_attention_dropout_rate: 0.1 | |
src_attention_dropout_rate: 0.1 | |
att_layer_num: 16 | |
kernel_size: 11 | |
sanm_shfit: 0 | |
predictor: CifPredictorV3 | |
predictor_conf: | |
idim: 512 | |
threshold: 1.0 | |
l_order: 1 | |
r_order: 1 | |
tail_threshold: 0.45 | |
smooth_factor2: 0.25 | |
noise_threshold2: 0.01 | |
upsample_times: 3 | |
use_cif1_cnn: false | |
upsample_type: cnn_blstm | |
# frontend related | |
frontend: WavFrontend | |
frontend_conf: | |
fs: 16000 | |
window: hamming | |
n_mels: 80 | |
frame_length: 25 | |
frame_shift: 10 | |
lfr_m: 7 | |
lfr_n: 6 | |
specaug: SpecAugLFR | |
specaug_conf: | |
apply_time_warp: false | |
time_warp_window: 5 | |
time_warp_mode: bicubic | |
apply_freq_mask: true | |
freq_mask_width_range: | |
- 0 | |
- 30 | |
lfr_rate: 6 | |
num_freq_mask: 1 | |
apply_time_mask: true | |
time_mask_width_range: | |
- 0 | |
- 12 | |
num_time_mask: 1 | |
train_conf: | |
accum_grad: 1 | |
grad_clip: 5 | |
max_epoch: 150 | |
val_scheduler_criterion: | |
- valid | |
- acc | |
best_model_criterion: | |
- - valid | |
- acc | |
- max | |
keep_nbest_models: 10 | |
log_interval: 50 | |
optim: adam | |
optim_conf: | |
lr: 0.0005 | |
scheduler: warmuplr | |
scheduler_conf: | |
warmup_steps: 30000 | |
dataset: AudioDataset | |
dataset_conf: | |
index_ds: IndexDSJsonl | |
batch_sampler: DynamicBatchLocalShuffleSampler | |
batch_type: example # example or length | |
batch_size: 1 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len; | |
max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length, | |
buffer_size: 500 | |
shuffle: True | |
num_workers: 0 | |
tokenizer: CharTokenizer | |
tokenizer_conf: | |
unk_symbol: <unk> | |
split_with_space: true | |
ctc_conf: | |
dropout_rate: 0.0 | |
ctc_type: builtin | |
reduce: true | |
ignore_nan_grad: true | |
normalize: null | |