Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Label smoothing module.""" | |
import torch | |
from torch import nn | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
class LabelSmoothingLoss(nn.Module): | |
"""Label-smoothing loss. | |
:param int size: the number of class | |
:param int padding_idx: ignored class id | |
:param float smoothing: smoothing rate (0.0 means the conventional CE) | |
:param bool normalize_length: normalize loss by sequence length if True | |
:param torch.nn.Module criterion: loss function to be smoothed | |
""" | |
def __init__( | |
self, | |
size, | |
padding_idx, | |
smoothing, | |
normalize_length=False, | |
criterion=nn.KLDivLoss(reduction="none"), | |
): | |
"""Construct an LabelSmoothingLoss object.""" | |
super(LabelSmoothingLoss, self).__init__() | |
self.criterion = criterion | |
self.padding_idx = padding_idx | |
self.confidence = 1.0 - smoothing | |
self.smoothing = smoothing | |
self.size = size | |
self.true_dist = None | |
self.normalize_length = normalize_length | |
def forward(self, x, target): | |
"""Compute loss between x and target. | |
:param torch.Tensor x: prediction (batch, seqlen, class) | |
:param torch.Tensor target: | |
target signal masked with self.padding_id (batch, seqlen) | |
:return: scalar float value | |
:rtype torch.Tensor | |
""" | |
assert x.size(2) == self.size | |
batch_size = x.size(0) | |
x = x.view(-1, self.size) | |
target = target.view(-1) | |
with torch.no_grad(): | |
true_dist = x.clone() | |
true_dist.fill_(self.smoothing / (self.size - 1)) | |
ignore = target == self.padding_idx # (B,) | |
total = len(target) - ignore.sum().item() | |
target = target.masked_fill(ignore, 0) # avoid -1 index | |
true_dist.scatter_(1, target.unsqueeze(1), self.confidence) | |
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) | |
denom = total if self.normalize_length else batch_size | |
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom | |
class SequenceBinaryCrossEntropy(nn.Module): | |
def __init__( | |
self, normalize_length=False, criterion=nn.BCEWithLogitsLoss(reduction="none") | |
): | |
super().__init__() | |
self.normalize_length = normalize_length | |
self.criterion = criterion | |
def forward(self, pred, label, lengths): | |
pad_mask = make_pad_mask(lengths, maxlen=pred.shape[1]).to(pred.device) | |
loss = self.criterion(pred, label) | |
denom = (~pad_mask).sum() if self.normalize_length else pred.shape[0] | |
return loss.masked_fill(pad_mask.unsqueeze(-1), 0).sum() / denom | |
class NllLoss(nn.Module): | |
"""Nll loss. | |
:param int size: the number of class | |
:param int padding_idx: ignored class id | |
:param bool normalize_length: normalize loss by sequence length if True | |
:param torch.nn.Module criterion: loss function | |
""" | |
def __init__( | |
self, | |
size, | |
padding_idx, | |
normalize_length=False, | |
criterion=nn.NLLLoss(reduction="none"), | |
): | |
"""Construct an NllLoss object.""" | |
super(NllLoss, self).__init__() | |
self.criterion = criterion | |
self.padding_idx = padding_idx | |
self.size = size | |
self.true_dist = None | |
self.normalize_length = normalize_length | |
def forward(self, x, target): | |
"""Compute loss between x and target. | |
:param torch.Tensor x: prediction (batch, seqlen, class) | |
:param torch.Tensor target: | |
target signal masked with self.padding_id (batch, seqlen) | |
:return: scalar float value | |
:rtype torch.Tensor | |
""" | |
assert x.size(2) == self.size | |
batch_size = x.size(0) | |
x = x.view(-1, self.size) | |
target = target.view(-1) | |
with torch.no_grad(): | |
ignore = target == self.padding_idx # (B,) | |
total = len(target) - ignore.sum().item() | |
target = target.masked_fill(ignore, 0) # avoid -1 index | |
kl = self.criterion(x, target) | |
denom = total if self.normalize_length else batch_size | |
return kl.masked_fill(ignore, 0).sum() / denom | |