Spaces:
Runtime error
Runtime error
File size: 18,881 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from typing import List
from typing import Tuple
import logging
import torch
import torch.nn as nn
import numpy as np
from funasr_detach.models.scama import utils as myutils
from funasr_detach.models.transformer.decoder import BaseTransformerDecoder
from funasr_detach.models.sanm.attention import (
MultiHeadedAttentionSANMDecoder,
MultiHeadedAttentionCrossAtt,
)
from funasr_detach.models.transformer.embedding import PositionalEncoding
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.sanm.positionwise_feed_forward import (
PositionwiseFeedForwardDecoderSANM,
)
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.register import tables
class DecoderLayerSANM(nn.Module):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
self_attn,
src_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
):
"""Construct an DecoderLayer object."""
super(DecoderLayerSANM, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)
if self_attn is not None:
self.norm2 = LayerNorm(size)
if src_attn is not None:
self.norm3 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear1 = nn.Linear(size + size, size)
self.concat_linear2 = nn.Linear(size + size, size)
def forward(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
# tgt = self.dropout(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn:
if self.normalize_before:
tgt = self.norm2(tgt)
x, _ = self.self_attn(tgt, tgt_mask)
x = residual + self.dropout(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.src_attn(x, memory, memory_mask))
return x, tgt_mask, memory, memory_mask, cache
def forward_one_step(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
# tgt = self.dropout(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn:
if self.normalize_before:
tgt = self.norm2(tgt)
if self.training:
cache = None
x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
x = residual + self.dropout(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.src_attn(x, memory, memory_mask))
return x, tgt_mask, memory, memory_mask, cache
def forward_chunk(
self, tgt, memory, fsmn_cache=None, opt_cache=None, chunk_size=None, look_back=0
):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
cache (List[torch.Tensor]): List of cached tensors.
Each tensor shape should be (#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
tgt = self.feed_forward(tgt)
x = tgt
if self.self_attn:
if self.normalize_before:
tgt = self.norm2(tgt)
x, fsmn_cache = self.self_attn(tgt, None, fsmn_cache)
x = residual + self.dropout(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm3(x)
x, opt_cache = self.src_attn.forward_chunk(
x, memory, opt_cache, chunk_size, look_back
)
x = residual + x
return x, memory, fsmn_cache, opt_cache
@tables.register("decoder_classes", "FsmnDecoder")
class FsmnDecoder(BaseTransformerDecoder):
"""
Author: Zhifu Gao, Shiliang Zhang, Ming Lei, Ian McLoughlin
San-m: Memory equipped self-attention for end-to-end speech recognition
https://arxiv.org/abs/2006.01713
"""
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
self_attention_dropout_rate: float = 0.0,
src_attention_dropout_rate: float = 0.0,
input_layer: str = "embed",
use_output_layer: bool = True,
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
att_layer_num: int = 6,
kernel_size: int = 21,
sanm_shfit: int = None,
concat_embeds: bool = False,
attention_dim: int = None,
tf2torch_tensor_name_prefix_torch: str = "decoder",
tf2torch_tensor_name_prefix_tf: str = "seq2seq/decoder",
embed_tensor_name_prefix_tf: str = None,
):
super().__init__(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
input_layer=input_layer,
use_output_layer=use_output_layer,
pos_enc_class=pos_enc_class,
normalize_before=normalize_before,
)
if attention_dim is None:
attention_dim = encoder_output_size
if input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(vocab_size, attention_dim),
)
elif input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(vocab_size, attention_dim),
torch.nn.LayerNorm(attention_dim),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate),
)
else:
raise ValueError(f"only 'embed' or 'linear' is supported: {input_layer}")
self.normalize_before = normalize_before
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
if use_output_layer:
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
else:
self.output_layer = None
self.att_layer_num = att_layer_num
self.num_blocks = num_blocks
if sanm_shfit is None:
sanm_shfit = (kernel_size - 1) // 2
self.decoders = repeat(
att_layer_num,
lambda lnum: DecoderLayerSANM(
attention_dim,
MultiHeadedAttentionSANMDecoder(
attention_dim,
self_attention_dropout_rate,
kernel_size,
sanm_shfit=sanm_shfit,
),
MultiHeadedAttentionCrossAtt(
attention_heads,
attention_dim,
src_attention_dropout_rate,
encoder_output_size=encoder_output_size,
),
PositionwiseFeedForwardDecoderSANM(
attention_dim, linear_units, dropout_rate
),
dropout_rate,
normalize_before,
concat_after,
),
)
if num_blocks - att_layer_num <= 0:
self.decoders2 = None
else:
self.decoders2 = repeat(
num_blocks - att_layer_num,
lambda lnum: DecoderLayerSANM(
attention_dim,
MultiHeadedAttentionSANMDecoder(
attention_dim,
self_attention_dropout_rate,
kernel_size,
sanm_shfit=sanm_shfit,
),
None,
PositionwiseFeedForwardDecoderSANM(
attention_dim, linear_units, dropout_rate
),
dropout_rate,
normalize_before,
concat_after,
),
)
self.decoders3 = repeat(
1,
lambda lnum: DecoderLayerSANM(
attention_dim,
None,
None,
PositionwiseFeedForwardDecoderSANM(
attention_dim, linear_units, dropout_rate
),
dropout_rate,
normalize_before,
concat_after,
),
)
if concat_embeds:
self.embed_concat_ffn = repeat(
1,
lambda lnum: DecoderLayerSANM(
attention_dim + encoder_output_size,
None,
None,
PositionwiseFeedForwardDecoderSANM(
attention_dim + encoder_output_size,
linear_units,
dropout_rate,
adim=attention_dim,
),
dropout_rate,
normalize_before,
concat_after,
),
)
else:
self.embed_concat_ffn = None
self.concat_embeds = concat_embeds
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.embed_tensor_name_prefix_tf = embed_tensor_name_prefix_tf
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
chunk_mask: torch.Tensor = None,
pre_acoustic_embeds: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
if chunk_mask is not None:
memory_mask = memory_mask * chunk_mask
if tgt_mask.size(1) != memory_mask.size(1):
memory_mask = torch.cat((memory_mask, memory_mask[:, -2:-1, :]), dim=1)
x = self.embed(tgt)
if pre_acoustic_embeds is not None and self.concat_embeds:
x = torch.cat((x, pre_acoustic_embeds), dim=-1)
x, _, _, _, _ = self.embed_concat_ffn(x, None, None, None, None)
x, tgt_mask, memory, memory_mask, _ = self.decoders(
x, tgt_mask, memory, memory_mask
)
if self.decoders2 is not None:
x, tgt_mask, memory, memory_mask, _ = self.decoders2(
x, tgt_mask, memory, memory_mask
)
x, tgt_mask, memory, memory_mask, _ = self.decoders3(
x, tgt_mask, memory, memory_mask
)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, olens
def score(
self,
ys,
state,
x,
x_mask=None,
pre_acoustic_embeds: torch.Tensor = None,
):
"""Score."""
ys_mask = myutils.sequence_mask(
torch.tensor([len(ys)], dtype=torch.int32), device=x.device
)[:, :, None]
logp, state = self.forward_one_step(
ys.unsqueeze(0),
ys_mask,
x.unsqueeze(0),
memory_mask=x_mask,
pre_acoustic_embeds=pre_acoustic_embeds,
cache=state,
)
return logp.squeeze(0), state
def forward_one_step(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
memory_mask: torch.Tensor = None,
pre_acoustic_embeds: torch.Tensor = None,
cache: List[torch.Tensor] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
Args:
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
memory: encoded memory, float32 (batch, maxlen_in, feat)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x = tgt[:, -1:]
tgt_mask = None
x = self.embed(x)
if pre_acoustic_embeds is not None and self.concat_embeds:
x = torch.cat((x, pre_acoustic_embeds), dim=-1)
x, _, _, _, _ = self.embed_concat_ffn(x, None, None, None, None)
if cache is None:
cache_layer_num = len(self.decoders)
if self.decoders2 is not None:
cache_layer_num += len(self.decoders2)
cache = [None] * cache_layer_num
new_cache = []
# for c, decoder in zip(cache, self.decoders):
for i in range(self.att_layer_num):
decoder = self.decoders[i]
c = cache[i]
x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step(
x, tgt_mask, memory, memory_mask, cache=c
)
new_cache.append(c_ret)
if self.num_blocks - self.att_layer_num >= 1:
for i in range(self.num_blocks - self.att_layer_num):
j = i + self.att_layer_num
decoder = self.decoders2[i]
c = cache[j]
x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step(
x, tgt_mask, memory, memory_mask, cache=c
)
new_cache.append(c_ret)
for decoder in self.decoders3:
x, tgt_mask, memory, memory_mask, _ = decoder.forward_one_step(
x, tgt_mask, memory, None, cache=None
)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = self.output_layer(y)
y = torch.log_softmax(y, dim=-1)
return y, new_cache
|