Spaces:
Runtime error
Runtime error
File size: 11,740 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import torch
from funasr_detach.metrics import ErrorCalculator
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.losses.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
)
from funasr_detach.models.ctc import CTC
from funasr_detach.models.decoder.abs_decoder import AbsDecoder
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
from funasr_detach.frontends.abs_frontend import AbsFrontend
from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr_detach.models.specaug.abs_specaug import AbsSpecAug
from funasr_detach.layers.abs_normalize import AbsNormalize
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.base_model import FunASRModel
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
import pdb
import random
import math
class MFCCA(FunASRModel):
"""
Author: Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University
MFCCA:Multi-Frame Cross-Channel attention for multi-speaker ASR in Multi-party meeting scenario
https://arxiv.org/abs/2210.05265
"""
def __init__(
self,
vocab_size: int,
token_list: Union[Tuple[str, ...], List[str]],
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
encoder: AbsEncoder,
decoder: AbsDecoder,
ctc: CTC,
rnnt_decoder: None = None,
ctc_weight: float = 0.5,
ignore_id: int = -1,
lsm_weight: float = 0.0,
mask_ratio: float = 0.0,
length_normalized_loss: bool = False,
report_cer: bool = True,
report_wer: bool = True,
sym_space: str = "<space>",
sym_blank: str = "<blank>",
preencoder: Optional[AbsPreEncoder] = None,
):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
assert rnnt_decoder is None, "Not implemented"
super().__init__()
# note that eos is the same as sos (equivalent ID)
self.sos = vocab_size - 1
self.eos = vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.token_list = token_list.copy()
self.mask_ratio = mask_ratio
self.frontend = frontend
self.specaug = specaug
self.normalize = normalize
self.preencoder = preencoder
self.encoder = encoder
# we set self.decoder = None in the CTC mode since
# self.decoder parameters were never used and PyTorch complained
# and threw an Exception in the multi-GPU experiment.
# thanks Jeff Farris for pointing out the issue.
if ctc_weight == 1.0:
self.decoder = None
else:
self.decoder = decoder
if ctc_weight == 0.0:
self.ctc = None
else:
self.ctc = ctc
self.rnnt_decoder = rnnt_decoder
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
if report_cer or report_wer:
self.error_calculator = ErrorCalculator(
token_list, sym_space, sym_blank, report_cer, report_wer
)
else:
self.error_calculator = None
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
# pdb.set_trace()
if speech.dim() == 3 and speech.size(2) == 8 and self.mask_ratio != 0:
rate_num = random.random()
# rate_num = 0.1
if rate_num <= self.mask_ratio:
retain_channel = math.ceil(random.random() * 8)
if retain_channel > 1:
speech = speech[
:, :, torch.randperm(8)[0:retain_channel].sort().values
]
else:
speech = speech[:, :, torch.randperm(8)[0]]
# pdb.set_trace()
batch_size = speech.shape[0]
# for data-parallel
text = text[:, : text_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
# 2a. Attention-decoder branch
if self.ctc_weight == 1.0:
loss_att, acc_att, cer_att, wer_att = None, None, None, None
else:
loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 2b. CTC branch
if self.ctc_weight == 0.0:
loss_ctc, cer_ctc = None, None
else:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 2c. RNN-T branch
if self.rnnt_decoder is not None:
_ = self._calc_rnnt_loss(encoder_out, encoder_out_lens, text, text_lengths)
if self.ctc_weight == 0.0:
loss = loss_att
elif self.ctc_weight == 1.0:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
stats = dict(
loss=loss.detach(),
loss_att=loss_att.detach() if loss_att is not None else None,
loss_ctc=loss_ctc.detach() if loss_ctc is not None else None,
acc=acc_att,
cer=cer_att,
wer=wer_att,
cer_ctc=cer_ctc,
)
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def collect_feats(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, torch.Tensor]:
feats, feats_lengths, channel_size = self._extract_feats(speech, speech_lengths)
return {"feats": feats, "feats_lengths": feats_lengths}
def encode(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
"""
with autocast(False):
# 1. Extract feats
feats, feats_lengths, channel_size = self._extract_feats(
speech, speech_lengths
)
# 2. Data augmentation
if self.specaug is not None and self.training:
feats, feats_lengths = self.specaug(feats, feats_lengths)
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
feats, feats_lengths = self.normalize(feats, feats_lengths)
# Pre-encoder, e.g. used for raw input data
if self.preencoder is not None:
feats, feats_lengths = self.preencoder(feats, feats_lengths)
# pdb.set_trace()
encoder_out, encoder_out_lens, _ = self.encoder(
feats, feats_lengths, channel_size
)
assert encoder_out.size(0) == speech.size(0), (
encoder_out.size(),
speech.size(0),
)
if encoder_out.dim() == 4:
assert encoder_out.size(2) <= encoder_out_lens.max(), (
encoder_out.size(),
encoder_out_lens.max(),
)
else:
assert encoder_out.size(1) <= encoder_out_lens.max(), (
encoder_out.size(),
encoder_out_lens.max(),
)
return encoder_out, encoder_out_lens
def _extract_feats(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
assert speech_lengths.dim() == 1, speech_lengths.shape
# for data-parallel
speech = speech[:, : speech_lengths.max()]
if self.frontend is not None:
# Frontend
# e.g. STFT and Feature extract
# data_loader may send time-domain signal in this case
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
feats, feats_lengths, channel_size = self.frontend(speech, speech_lengths)
else:
# No frontend and no feature extract
feats, feats_lengths = speech, speech_lengths
channel_size = 1
return feats, feats_lengths, channel_size
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
if encoder_out.dim() == 4:
encoder_out = encoder_out.mean(1)
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc
def _calc_rnnt_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
raise NotImplementedError
|