File size: 11,740 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import torch

from funasr_detach.metrics import ErrorCalculator
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.losses.label_smoothing_loss import (
    LabelSmoothingLoss,  # noqa: H301
)
from funasr_detach.models.ctc import CTC
from funasr_detach.models.decoder.abs_decoder import AbsDecoder
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
from funasr_detach.frontends.abs_frontend import AbsFrontend
from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr_detach.models.specaug.abs_specaug import AbsSpecAug
from funasr_detach.layers.abs_normalize import AbsNormalize
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.base_model import FunASRModel

if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


import pdb
import random
import math


class MFCCA(FunASRModel):
    """
    Author: Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University
    MFCCA:Multi-Frame Cross-Channel attention for multi-speaker ASR in Multi-party meeting scenario
    https://arxiv.org/abs/2210.05265
    """

    def __init__(
        self,
        vocab_size: int,
        token_list: Union[Tuple[str, ...], List[str]],
        frontend: Optional[AbsFrontend],
        specaug: Optional[AbsSpecAug],
        normalize: Optional[AbsNormalize],
        encoder: AbsEncoder,
        decoder: AbsDecoder,
        ctc: CTC,
        rnnt_decoder: None = None,
        ctc_weight: float = 0.5,
        ignore_id: int = -1,
        lsm_weight: float = 0.0,
        mask_ratio: float = 0.0,
        length_normalized_loss: bool = False,
        report_cer: bool = True,
        report_wer: bool = True,
        sym_space: str = "<space>",
        sym_blank: str = "<blank>",
        preencoder: Optional[AbsPreEncoder] = None,
    ):
        assert 0.0 <= ctc_weight <= 1.0, ctc_weight
        assert rnnt_decoder is None, "Not implemented"

        super().__init__()
        # note that eos is the same as sos (equivalent ID)
        self.sos = vocab_size - 1
        self.eos = vocab_size - 1
        self.vocab_size = vocab_size
        self.ignore_id = ignore_id
        self.ctc_weight = ctc_weight
        self.token_list = token_list.copy()

        self.mask_ratio = mask_ratio

        self.frontend = frontend
        self.specaug = specaug
        self.normalize = normalize
        self.preencoder = preencoder
        self.encoder = encoder
        # we set self.decoder = None in the CTC mode since
        # self.decoder parameters were never used and PyTorch complained
        # and threw an Exception in the multi-GPU experiment.
        # thanks Jeff Farris for pointing out the issue.
        if ctc_weight == 1.0:
            self.decoder = None
        else:
            self.decoder = decoder
        if ctc_weight == 0.0:
            self.ctc = None
        else:
            self.ctc = ctc
        self.rnnt_decoder = rnnt_decoder
        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        if report_cer or report_wer:
            self.error_calculator = ErrorCalculator(
                token_list, sym_space, sym_blank, report_cer, report_wer
            )
        else:
            self.error_calculator = None

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Frontend + Encoder + Decoder + Calc loss
        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
            text: (Batch, Length)
            text_lengths: (Batch,)
        """
        assert text_lengths.dim() == 1, text_lengths.shape
        # Check that batch_size is unified
        assert (
            speech.shape[0]
            == speech_lengths.shape[0]
            == text.shape[0]
            == text_lengths.shape[0]
        ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
        # pdb.set_trace()
        if speech.dim() == 3 and speech.size(2) == 8 and self.mask_ratio != 0:
            rate_num = random.random()
            # rate_num = 0.1
            if rate_num <= self.mask_ratio:
                retain_channel = math.ceil(random.random() * 8)
                if retain_channel > 1:
                    speech = speech[
                        :, :, torch.randperm(8)[0:retain_channel].sort().values
                    ]
                else:
                    speech = speech[:, :, torch.randperm(8)[0]]
        # pdb.set_trace()
        batch_size = speech.shape[0]
        # for data-parallel
        text = text[:, : text_lengths.max()]

        # 1. Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)

        # 2a. Attention-decoder branch
        if self.ctc_weight == 1.0:
            loss_att, acc_att, cer_att, wer_att = None, None, None, None
        else:
            loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
                encoder_out, encoder_out_lens, text, text_lengths
            )

        # 2b. CTC branch
        if self.ctc_weight == 0.0:
            loss_ctc, cer_ctc = None, None
        else:
            loss_ctc, cer_ctc = self._calc_ctc_loss(
                encoder_out, encoder_out_lens, text, text_lengths
            )

        # 2c. RNN-T branch
        if self.rnnt_decoder is not None:
            _ = self._calc_rnnt_loss(encoder_out, encoder_out_lens, text, text_lengths)

        if self.ctc_weight == 0.0:
            loss = loss_att
        elif self.ctc_weight == 1.0:
            loss = loss_ctc
        else:
            loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att

        stats = dict(
            loss=loss.detach(),
            loss_att=loss_att.detach() if loss_att is not None else None,
            loss_ctc=loss_ctc.detach() if loss_ctc is not None else None,
            acc=acc_att,
            cer=cer_att,
            wer=wer_att,
            cer_ctc=cer_ctc,
        )

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def collect_feats(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
    ) -> Dict[str, torch.Tensor]:
        feats, feats_lengths, channel_size = self._extract_feats(speech, speech_lengths)
        return {"feats": feats, "feats_lengths": feats_lengths}

    def encode(
        self, speech: torch.Tensor, speech_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Frontend + Encoder. Note that this method is used by asr_inference.py
        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
        """
        with autocast(False):
            # 1. Extract feats
            feats, feats_lengths, channel_size = self._extract_feats(
                speech, speech_lengths
            )
            # 2. Data augmentation
            if self.specaug is not None and self.training:
                feats, feats_lengths = self.specaug(feats, feats_lengths)

            # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                feats, feats_lengths = self.normalize(feats, feats_lengths)

        # Pre-encoder, e.g. used for raw input data
        if self.preencoder is not None:
            feats, feats_lengths = self.preencoder(feats, feats_lengths)
        # pdb.set_trace()
        encoder_out, encoder_out_lens, _ = self.encoder(
            feats, feats_lengths, channel_size
        )

        assert encoder_out.size(0) == speech.size(0), (
            encoder_out.size(),
            speech.size(0),
        )
        if encoder_out.dim() == 4:
            assert encoder_out.size(2) <= encoder_out_lens.max(), (
                encoder_out.size(),
                encoder_out_lens.max(),
            )
        else:
            assert encoder_out.size(1) <= encoder_out_lens.max(), (
                encoder_out.size(),
                encoder_out_lens.max(),
            )

        return encoder_out, encoder_out_lens

    def _extract_feats(
        self, speech: torch.Tensor, speech_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        assert speech_lengths.dim() == 1, speech_lengths.shape
        # for data-parallel
        speech = speech[:, : speech_lengths.max()]
        if self.frontend is not None:
            # Frontend
            #  e.g. STFT and Feature extract
            #       data_loader may send time-domain signal in this case
            # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
            feats, feats_lengths, channel_size = self.frontend(speech, speech_lengths)
        else:
            # No frontend and no feature extract
            feats, feats_lengths = speech, speech_lengths
            channel_size = 1
        return feats, feats_lengths, channel_size

    def _calc_att_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
        )

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )

        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att

    def _calc_ctc_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        # Calc CTC loss
        if encoder_out.dim() == 4:
            encoder_out = encoder_out.mean(1)
        loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)

        # Calc CER using CTC
        cer_ctc = None
        if not self.training and self.error_calculator is not None:
            ys_hat = self.ctc.argmax(encoder_out).data
            cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
        return loss_ctc, cer_ctc

    def _calc_rnnt_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        raise NotImplementedError