File size: 4,883 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)

import time
import torch
import numpy as np
from collections import OrderedDict
from contextlib import contextmanager
from distutils.version import LooseVersion

from funasr_detach.register import tables
from funasr_detach.models.campplus.utils import extract_feature
from funasr_detach.utils.load_utils import load_audio_text_image_video
from funasr_detach.models.campplus.components import (
    DenseLayer,
    StatsPool,
    TDNNLayer,
    CAMDenseTDNNBlock,
    TransitLayer,
    get_nonlinear,
    FCM,
)


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "CAMPPlus")
class CAMPPlus(torch.nn.Module):
    def __init__(
        self,
        feat_dim=80,
        embedding_size=192,
        growth_rate=32,
        bn_size=4,
        init_channels=128,
        config_str="batchnorm-relu",
        memory_efficient=True,
        output_level="segment",
        **kwargs,
    ):
        super().__init__()

        self.head = FCM(feat_dim=feat_dim)
        channels = self.head.out_channels
        self.output_level = output_level

        self.xvector = torch.nn.Sequential(
            OrderedDict(
                [
                    (
                        "tdnn",
                        TDNNLayer(
                            channels,
                            init_channels,
                            5,
                            stride=2,
                            dilation=1,
                            padding=-1,
                            config_str=config_str,
                        ),
                    ),
                ]
            )
        )
        channels = init_channels
        for i, (num_layers, kernel_size, dilation) in enumerate(
            zip((12, 24, 16), (3, 3, 3), (1, 2, 2))
        ):
            block = CAMDenseTDNNBlock(
                num_layers=num_layers,
                in_channels=channels,
                out_channels=growth_rate,
                bn_channels=bn_size * growth_rate,
                kernel_size=kernel_size,
                dilation=dilation,
                config_str=config_str,
                memory_efficient=memory_efficient,
            )
            self.xvector.add_module("block%d" % (i + 1), block)
            channels = channels + num_layers * growth_rate
            self.xvector.add_module(
                "transit%d" % (i + 1),
                TransitLayer(
                    channels, channels // 2, bias=False, config_str=config_str
                ),
            )
            channels //= 2

        self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels))

        if self.output_level == "segment":
            self.xvector.add_module("stats", StatsPool())
            self.xvector.add_module(
                "dense",
                DenseLayer(channels * 2, embedding_size, config_str="batchnorm_"),
            )
        else:
            assert (
                self.output_level == "frame"
            ), "`output_level` should be set to 'segment' or 'frame'. "

        for m in self.modules():
            if isinstance(m, (torch.nn.Conv1d, torch.nn.Linear)):
                torch.nn.init.kaiming_normal_(m.weight.data)
                if m.bias is not None:
                    torch.nn.init.zeros_(m.bias)

    def forward(self, x):
        x = x.permute(0, 2, 1)  # (B,T,F) => (B,F,T)
        x = self.head(x)
        x = self.xvector(x)
        if self.output_level == "frame":
            x = x.transpose(1, 2)
        return x

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):
        # extract fbank feats
        meta_data = {}
        time1 = time.perf_counter()
        audio_sample_list = load_audio_text_image_video(
            data_in, fs=16000, audio_fs=kwargs.get("fs", 16000), data_type="sound"
        )
        time2 = time.perf_counter()
        meta_data["load_data"] = f"{time2 - time1:0.3f}"
        speech, speech_lengths, speech_times = extract_feature(audio_sample_list)
        speech = speech.to(device=kwargs["device"])
        time3 = time.perf_counter()
        meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
        meta_data["batch_data_time"] = np.array(speech_times).sum().item() / 16000.0
        results = [{"spk_embedding": self.forward(speech.to(torch.float32))}]
        return results, meta_data