Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image, ImageDraw | |
from transformers import AutoImageProcessor | |
from transformers import AutoModelForObjectDetection | |
from PIL import Image | |
model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector_synthetic_data_only" | |
image_processor = AutoImageProcessor.from_pretrained(model_save_path) | |
model = AutoModelForObjectDetection.from_pretrained(model_save_path) | |
id2label = model.config.id2label | |
color_dict = { | |
"not_trash": "red", | |
"bin": "green", | |
"trash": "blue", | |
"hand": "purple" | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
def predict_on_image(image, conf_threshold=0.25): | |
with torch.no_grad(): | |
inputs = image_processor(images=[image], return_tensors="pt") | |
outputs = model(**inputs.to(device)) | |
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # height, width | |
results = image_processor.post_process_object_detection(outputs, | |
threshold=conf_threshold, | |
target_sizes=target_sizes)[0] | |
# Return all items in results to CPU | |
for key, value in results.items(): | |
try: | |
results[key] = value.item().cpu() # can't get scalar as .item() so add try/except block | |
except: | |
results[key] = value.cpu() | |
# Can return results as plotted on a PIL image (then display the image) | |
draw = ImageDraw.Draw(image) | |
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]): | |
# Create coordinates | |
x, y, x2, y2 = tuple(box.tolist()) | |
# Get label_name | |
label_name = id2label[label.item()] | |
targ_color = color_dict[label_name] | |
# Draw the rectangle | |
draw.rectangle(xy=(x, y, x2, y2), | |
outline=targ_color, | |
width=3) | |
# Create a text string to display | |
text_string_to_show = f"{label_name} ({round(score.item(), 3)})" | |
# Draw the text on the image | |
draw.text(xy=(x, y), | |
text=text_string_to_show, | |
fill="white") | |
# Remove the draw each time | |
del draw | |
return image | |
demo = gr.Interface( | |
fn=predict_on_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Target Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold") | |
], | |
outputs=gr.Image(type="pil"), | |
title="๐ฎ Trashify Object Detection Demo", | |
description="Upload an image to detect whether there's a bin, a hand or trash in it." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |