Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import os | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
import sys | |
sys.path.insert(0, './diffusers/src') | |
import torch | |
import torch.nn as nn | |
#Hack for ZeroGPU | |
torch.jit.script = lambda f: f | |
#### | |
from huggingface_hub import snapshot_download | |
from diffusers import DPMSolverMultistepScheduler | |
from diffusers.models import ControlNetModel | |
from transformers import CLIPVisionModelWithProjection | |
from pipeline import OmniZeroPipeline | |
from insightface.app import FaceAnalysis | |
from controlnet_aux import ZoeDetector | |
from utils import draw_kps, load_and_resize_image, align_images | |
import cv2 | |
import numpy as np | |
base_model="frankjoshua/albedobaseXL_v13" | |
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2") | |
face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider']) | |
face_analysis.prepare(ctx_id=0, det_size=(640, 640)) | |
dtype = torch.float16 | |
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
"h94/IP-Adapter", | |
subfolder="models/image_encoder", | |
torch_dtype=dtype, | |
).to("cuda") | |
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl" | |
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda") | |
identitiynet_path = "okaris/face-controlnet-xl" | |
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda") | |
zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda") | |
pipeline = OmniZeroPipeline.from_pretrained( | |
base_model, | |
controlnet=[identitynet, zoedepthnet], | |
torch_dtype=dtype, | |
image_encoder=ip_adapter_plus_image_encoder, | |
).to("cuda") | |
config = pipeline.scheduler.config | |
config["timestep_spacing"] = "trailing" | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero") | |
pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"]) | |
def get_largest_face_embedding_and_kps(image, target_image=None): | |
face_info = face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
if len(face_info) == 0: | |
return None, None | |
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0] | |
face_embedding = torch.tensor(largest_face['embedding']).to("cuda") | |
if target_image is None: | |
target_image = image | |
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8) | |
face_kps_image = draw_kps(zeros, largest_face['kps']) | |
return face_embedding, face_kps_image | |
def generate( | |
prompt="A person", | |
composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", | |
style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584", | |
identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58", | |
base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", | |
seed=42, | |
negative_prompt="blurry, out of focus", | |
guidance_scale=3.0, | |
number_of_images=1, | |
number_of_steps=10, | |
base_image_strength=0.15, | |
composition_image_strength=1.0, | |
style_image_strength=1.0, | |
identity_image_strength=1.0, | |
depth_image=None, | |
depth_image_strength=0.5, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
resolution = 1024 | |
if base_image is not None: | |
base_image = load_and_resize_image(base_image, resolution, resolution) | |
else: | |
if composition_image is not None: | |
base_image = load_and_resize_image(composition_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide a base image or a composition image") | |
if depth_image is None: | |
depth_image = zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution) | |
else: | |
depth_image = load_and_resize_image(depth_image, resolution, resolution) | |
base_image, depth_image = align_images(base_image, depth_image) | |
if composition_image is not None: | |
composition_image = load_and_resize_image(composition_image, resolution, resolution) | |
else: | |
composition_image = base_image | |
if style_image is not None: | |
style_image = load_and_resize_image(style_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide a style image") | |
if identity_image is not None: | |
identity_image = load_and_resize_image(identity_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide an identity image") | |
face_embedding_identity_image, target_kps = get_largest_face_embedding_and_kps(identity_image, base_image) | |
if face_embedding_identity_image is None: | |
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small") | |
face_embedding_base_image, face_kps_base_image = get_largest_face_embedding_and_kps(base_image) | |
if face_embedding_base_image is not None: | |
target_kps = face_kps_base_image | |
pipeline.set_ip_adapter_scale([identity_image_strength, | |
{ | |
"down": { "block_2": [0.0, 0.0] }, | |
"up": { "block_0": [0.0, style_image_strength, 0.0] } | |
}, | |
{ | |
"down": { "block_2": [0.0, composition_image_strength] }, | |
"up": { "block_0": [0.0, 0.0, 0.0] } | |
} | |
]) | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
images = pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image], | |
image=base_image, | |
control_image=[target_kps, depth_image], | |
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength], | |
identity_control_indices=[(0,0)], | |
num_inference_steps=number_of_steps, | |
num_images_per_prompt=number_of_images, | |
strength=(1-base_image_strength), | |
generator=generator, | |
seed=seed, | |
).images | |
return images | |
#Move the components in the example fields outside so they are available when gr.Examples is instantiated | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center'>Omniverse</h1>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", value="A person") | |
with gr.Row(): | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, out of focus") | |
with gr.Row(): | |
with gr.Column(min_width=140): | |
with gr.Row(): | |
composition_image = gr.Image(label="Composition") | |
with gr.Row(): | |
composition_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0) | |
#with gr.Row(): | |
with gr.Column(min_width=140): | |
with gr.Row(): | |
style_image = gr.Image(label="Style Image") | |
with gr.Row(): | |
style_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0) | |
with gr.Column(min_width=140): | |
with gr.Row(): | |
identity_image = gr.Image(label="Identity Image") | |
with gr.Row(): | |
identity_image_strength = gr.Slider(label="Strenght",step=0.01, minimum=0.0, maximum=1.0, value=1.0) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
with gr.Column(min_width=140): | |
with gr.Row(): | |
base_image = gr.Image(label="Base Image") | |
with gr.Row(): | |
base_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=0.15, min_width=120) | |
# with gr.Column(min_width=140): | |
# with gr.Row(): | |
# depth_image = gr.Image(label="depth_image", value=None) | |
# with gr.Row(): | |
# depth_image_strength = gr.Slider(label="depth_image_strength",step=0.01, minimum=0.0, maximum=1.0, value=0.5) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed",step=1, minimum=0, maximum=10000000, value=42) | |
number_of_images = gr.Slider(label="Number of Outputs",step=1, minimum=1, maximum=4, value=1) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance Scale",step=0.1, minimum=0.0, maximum=14.0, value=3.0) | |
number_of_steps = gr.Slider(label="Number of Steps",step=1, minimum=1, maximum=50, value=10) | |
with gr.Column(): | |
with gr.Row(): | |
out = gr.Gallery(label="Output(s)") | |
with gr.Row(): | |
# clear = gr.Button("Clear") | |
submit = gr.Button("Generate") | |
submit.click(generate, inputs=[ | |
prompt, | |
composition_image, | |
style_image, | |
identity_image, | |
base_image, | |
seed, | |
negative_prompt, | |
guidance_scale, | |
number_of_images, | |
number_of_steps, | |
base_image_strength, | |
composition_image_strength, | |
style_image_strength, | |
identity_image_strength, | |
], | |
outputs=[out] | |
) | |
# clear.click(lambda: None, None, chatbot, queue=False) | |
gr.Examples( | |
examples=[["A person", "https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", "https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584", "https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58"]], | |
inputs=[prompt, composition_image, style_image, identity_image], | |
outputs=[out], | |
fn=generate, | |
cache_examples="lazy", | |
) | |
if __name__ == "__main__": | |
demo.launch() |