Spaces:
Sleeping
Sleeping
import math | |
import PIL | |
import cv2 | |
import numpy as np | |
from diffusers.utils import load_image | |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): | |
stickwidth = 4 | |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
kps = np.array(kps) | |
# w, h = image_pil.size | |
# out_img = np.zeros([h, w, 3]) | |
if type(image_pil) == PIL.Image.Image: | |
out_img = np.array(image_pil) | |
else: | |
out_img = image_pil | |
for i in range(len(limbSeq)): | |
index = limbSeq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
polygon = cv2.ellipse2Poly( | |
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 | |
) | |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
out_img = (out_img * 0.6).astype(np.uint8) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) | |
return out_img_pil | |
def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_ratio=True): | |
# Open the image | |
# image = Image.open(image_path) | |
image = load_image(image_path) | |
# Get the current width and height of the image | |
current_width, current_height = image.size | |
if maintain_aspect_ratio: | |
# Calculate the aspect ratio of the image | |
aspect_ratio = current_width / current_height | |
# Calculate the new dimensions based on the max width and height | |
if current_width / max_width > current_height / max_height: | |
new_width = max_width | |
new_height = int(new_width / aspect_ratio) | |
else: | |
new_height = max_height | |
new_width = int(new_height * aspect_ratio) | |
else: | |
# Use the max width and height as the new dimensions | |
new_width = max_width | |
new_height = max_height | |
# Ensure the new dimensions are divisible by 8 | |
new_width = (new_width // 8) * 8 | |
new_height = (new_height // 8) * 8 | |
# Resize the image | |
resized_image = image.resize((new_width, new_height)) | |
return resized_image | |
from PIL import Image | |
def align_images(image1, image2): | |
""" | |
Resize two images to the same dimensions by cropping the larger image(s) to match the smaller one. | |
Args: | |
image1 (PIL.Image): First image to be aligned. | |
image2 (PIL.Image): Second image to be aligned. | |
Returns: | |
tuple: A tuple containing two images with the same dimensions. | |
""" | |
# Determine the new size by taking the smaller width and height from both images | |
new_width = min(image1.size[0], image2.size[0]) | |
new_height = min(image1.size[1], image2.size[1]) | |
# Crop both images if necessary | |
if image1.size != (new_width, new_height): | |
image1 = image1.crop((0, 0, new_width, new_height)) | |
if image2.size != (new_width, new_height): | |
image2 = image2.crop((0, 0, new_width, new_height)) | |
return image1, image2 | |