import os import cv2 import numpy as np import gradio as gr from PIL import Image import tensorflow as tf # model = tf.keras.models.Sequential([ # tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), # tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), # tf.keras.layers.BatchNormalization(), # tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), # tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), # tf.keras.layers.BatchNormalization(), # tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), # tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), # tf.keras.layers.BatchNormalization(), # tf.keras.layers.GlobalAveragePooling2D(), # tf.keras.layers.Dense(10, activation='softmax') # ]) # model.compile(optimizer=tf.keras.optimizers.Adam(), # loss=tf.keras.losses.CategoricalCrossentropy(), # metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) # model.load_model("my_model.keras") def image_mod(image): # img = Image.fromarray(image['composite']) model = tf.keras.models.load_model('weights_1.h5') test_img = np.array(image['composite']).reshape(1, 28, 28, 1) # test_img = cv2.resize(np.array(image['composite']), (28, 28, 1)) prediction = model.predict(test_img) pred = np.argmax(prediction, axis=1)[0] return pred title = "Draw to Search" description = "Using the power of AI to detect the number you draw!" demo = gr.Interface( fn=image_mod, inputs='sketchpad', outputs='text', title=title, description=description, live=True) demo.launch(share=False) # demo.launch(debug=True)