import os import numpy as np import gradio as gr import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(28, 28, 1)), tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) model = tf.keras.models.load_model('my_model.h5', compile=False) def classify_image(image): if len(np.array(image).shape) == 3: image = tf.image.rgb_to_grayscale(image) # image = np.array(image['composite'])[:, :, 3] * 255 # image = image[..., np.newaxis] image_tensor = tf.convert_to_tensor(image) image_tensor = tf.image.resize(image_tensor, (28, 28)), image_tensor = tf.cast(image_tensor, tf.float32) image_tensor = image_tensor / 255.0 prediction = model.predict(image_tensor) print(prediction) prediction_label = str(prediction.argmax()) return prediction_label title = "Draw to Search" description = "Using the power of AI to detect the number you draw!" article = "for source code you can visit [my github](https://github.com/mralamdari)" example_list = [["examples/" + example] for example in os.listdir("examples")] interface = gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), # inputs=gr.Sketchpad(), # outputs=gr.Label(num_top_classes=3, label="Predictions"), outputs='text', examples=example_list, title=title, description=description, article=article) interface.launch()